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Supplementary Note: Eagle2 algorithm

1 Background

1.1 Existing phasing methods

To our knowledge, all general-purpose methods for genome-wide population-based phasing that
have enjoyed widespread use in the past decade apply or innovate on the Li-Stephens haplotype-
copying HMM [21]. Very simply, given a set of K reference haplotypes, the Li-Stephens model
generates a new haplotype as an imperfect mosaic of reference haplotype segments. The states
of the model (K states per SNP) designate reference haplotypes, and the Markov process moves
left-to-right across a chromosome, choosing at each successive SNP whether to stay on the current
reference haplotype or jump to a new haplotype (the transitions) and whether to emit the refer-
ence haplotype’s allele or a mutant allele (the emissions). Thus, the Li-Stephens HMM has the
virtues of (approximately) modeling haplotype frequencies, mutation, and recombination. More-
over, it naturally extends to a generative model for diplotypes (i.e., pairs of haplotypes) assuming
independence of maternally- and paternally-derived haplotypes [5].

The diploid version of the Li-Stephens model is still Markovian and hence lends itself to phase
inference (for a given sample conditional on either a phased reference panel or estimated haplo-
types for other samples) via forward-backward, Viterbi, or Gibbs sampling approaches. The model
was first used (very successfully) for phasing in the PHASE v2 algorithm [5]. However, as data
sizes increased, the HMM computations for this model quickly became intractable; even with re-
cursive computation, calculation of forward and backward probabilities requires O(MK2) time
for M SNPs and K reference haplotypes [6]. This computational bottleneck led to a series of
innovations over the past decade, all of which involve some type of approximation:

• fastPHASE [6] performs clustering on haplotypes and approximates each cluster with a sin-
gle state, reducing K from the number of reference haplotypes to the number of clusters.

• Beagle [7, 9] applies a localized haplotype clustering approach [32, 33], reducing the state
space by approximating the HMM as a haplotype graph and carefully estimating transition
probabilities between clusters.

• HAPI-UR [11] operates on windows of dozens of SNPs at a time, collapsing haplotypes
identical within a window into a single state (thus approximating the HMM), and discarding
states inconsistent with the diploid individual being phased.

• SHAPEIT [10,12,14] conditions on only a subset of K locally best reference haplotypes (in
version 2 and higher), building an individual-specific HMM on 3-het haplotype clusters and
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performing Gibbs sampling in O(MK) time per MCMC iteration.

• Eagle1 [13] (in its final HMM-like step) analyzes a rudimentary HMM, using a fast scoring
scheme to search for an approximate Viterbi path through local subsets of K haplotypes and
applying a branching-and-pruning beam search to limit computational cost to O(MKP ),
where P is the beam width (i.e., the number of haplotype pairs retained after pruning).

Our recent work on Eagle1 [13] aimed to improve phasing speed at very large sample sizes by
using a hybrid approach of long-range phasing [8] followed by approximate HMM-based phas-
ing. (We note that long-range phasing alone suffices—and in fact may yield better accuracy than
HMM-based inference due to the challenge of resolving conflicts in IBD information—when a
sizable fraction of a population has been genotyped; however, this threshold has only been reached
in Iceland [8].) We demonstrated that when used to phase N=150K UK Biobank samples, Eagle1
achieved 1–2 order of magnitude speedups over existing methods at equal or greater accuracy.
However, for N<50K (and for underrepresented ethnicities in larger data sets), we observed that
Eagle1 achieved suboptimal accuracy, as expected given its makeshift HMM: our HMM approx-
imation was good enough to quickly identify strong phase evidence from sharing of long haplo-
types, but not good enough to properly evaluate regions with less-certain phase.

1.2 New approach: Eagle2

Given the above observation, we were motivated to develop a completely new statistical phasing
algorithm, Eagle2, that can attain the speed of Eagle1 without losing accuracy at smaller sample
sizes. Unlike Eagle1, Eagle2 analyzes a full probabilistic model similar to the diploid Li-Stephens
model used by existing methods (but relaxing the Markovian assumption). The key difference
between Eagle2 and previous methods is that whereas previous approaches approximate the hap-
lotype structure (e.g., by merging haplotypes into local clusters) to produce a more tractable HMM,
Eagle2 (1) efficiently represents the full haplotype structure in a way that losslessly condenses lo-
cally matching haplotypes; and (2) using this representation, selectively explores the diplotype
space in a way that only expends computation on the most likely phase paths (i.e., diplotypes with
highest posterior probabilities). We achieve (1) by introducing a new data structure, the HapHedge,
which requires only O(MK) time to generate using the positional Burrows-Wheeler transform
(PBWT) [20], and we achieve (2) by using a branching-and-pruning beam search (similar in spirit
to the beam search used in Eagle1 [13] but very different in implementation).

Intuitively, the main advantage of performing approximate inference by limiting exploration of
the diplotype space vs. simplifying the model itself is that the first approach (which we adopt in
Eagle2) has the potential to lose little or no accuracy if most phase paths are extremely unlikely.
The same can be said for the usual approach of reducing model complexity only if the model is
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simplified in a manner that eliminates unlikely phase paths without accidentally losing (or damp-
ing) likely phase paths. SHAPEIT2 [12] seems to achieve this behavior by building its HMMs
using small sets of locally-best references selected in an individual-specific manner, but in general,
simplifying the HMM in a way that does not lose accuracy appears to be quite challenging (based
on our benchmarks against existing methods). In particular, methods that create a single simplifed
HMM by locally clustering haplotypes and then modeling transition probabilities between consec-
utive clusters necessarily lose longer-range information.

An additional feature of the Eagle2 approach is that it no longer relies on standard forward-
backward HMM recursions for computational tractability, and as such, allows us to introduce
non-Markovian recombination probabilities that more accurately model the coalescent process.
Specifically, as we move along the genome extending a shared haplotype, the probability of re-
combining off the shared haplotype (conditional on the length shared so far) should decrease as
the sharing length grows. HMMs are unable to model this history-dependent behavior (unless the
state space is augmented with an age parameter at the expense of increased model complexity),
whereas Eagle2 has no trouble doing so. That said, we believe that this feature of Eagle2 is cur-
rently only of theoretical interest; our benchmarks indicate that Eagle2’s performance is insensitive
to the recombination model (Supplementary Table 11).

To be fair, the Eagle2 approach of exploring only a small portion of the diplotype space does
have the theoretical downside of being heuristic: by choosing to consider only part of the space,
we are forced to adopt less-rigorous approximate inference procedures and lose the theoretical
guarantees of HMM posterior decoding or sampling. Having to make this trade-off is not ideal, but
given our empirical evidence supporting the accuracy of Eagle2, its gains in speed over existing
methods, and the fact that other methods make theoretically challenging approximations at the
level of HMM-building, we believe the trade-off is worthwhile.

Thus far we have compared methods based on the core algorithm that they use to phase a
single sample using a given set of reference haplotypes. In practice, input for phasing software
typically contains many samples to be phased and may or may not include a phased reference panel.
Procedures for handling these situations are fairly straightforward; e.g., algorithms typically iterate
over samples, (re-)estimating haplotypes for each sample using the current haplotype estimates for
all other samples along with any provided reference haplotypes. The precise top-level procedure
that our software uses when analyzing a many-sample data set is described in Online Methods.
In the remainder of this note, we stay one level lower and detail the core subroutines that Eagle2
applies to phase a single sample given a reference set and to impute missing genotypes in the same
scenario. We then detail the core HapHedge data structure that makes these algorithms possible.
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2 Eagle2 core phasing algorithm

Here we describe the mathematical model and core algorithm that Eagle2 uses to phase a single
sample given a set of reference haplotypes.

2.1 Diplotype probability model

We consider a single “target” sample with diploid genotypes g1, . . . , gM ∈ {0, 1, 2} at M biallelic
markers. (We note that multiallelic markers can be coded as multiple biallelic markers.) We wish
to model the distribution over possible diplotypes—i.e., pairs of maternally- and paternally-derived
haplotypes hα1 , . . . , h

α
M ∈ {0, 1} and hβ1 , . . . , h

β
M ∈ {0, 1}—that could underlie the observed geno-

types g1, . . . , gM , taking into account population haplotype structure, recombination, and the pos-
sibility of single-SNP discrepancies (due to genotyping error, mutation, or gene conversion, any
of which could result in gm 6= hαm + hβm). We assume we are given a set of K (phased) reference
haplotypes {hk1, . . . , hkM}Kk=1 with which to model population haplotype structure. For notational
convenience, we will use colons to abbreviate lists, e.g., g1:M to abbreviate g1, . . . , gM , from here
on.

To model each of the above features of haplotype distributions, we use the general haplotype-
copying-with-error approach. Specifically,

• we put a prior P (hα1:M , h
β
1:M) on diplotypes (hα1:M , h

β
1:M) based on the process of copying

reference haplotypes with recombination,

• we put a distribution P (g1:M | hα1:M , h
β
1:M) on observed genotypes given putative maternally-

and paternally-derived haplotypes (to model single-SNP discrepancies), and

• we infer (relative) posterior probabilities P (hα1:M , h
β
1:M | g1:M) using Bayes’ rule:

P (hα1:M , h
β
1:M | g1:M) ∝ P (g1:M | hα1:M , h

β
1:M) · P (hα1:M , h

β
1:M). (1)

We now define the probabilities P (hα1:M , h
β
1:M) and P (g1:M | hα1:M , h

β
1:M).

2.1.1 Distribution of recombined haplotypes given reference haplotypes

To write down a prior P (hα1:M , h
β
1:M) on diplotypes, we first make the independence approximation

P (hα1:M , h
β
1:M) ≈ P (hα1:M) · P (hβ1:M), (2)

where the probabilities P (hα1:M) and P (hβ1:M) for the maternally- and paternally-derived haplotypes
come from the same distribution on haplotypes h1:M . (We will thus be unable to distinguish the
maternally- and paternally-derived haplotypes; all distributions will be symmetric with respect to
hα1:M and hβ1:M .)
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For a single haplotype h1:M , we model h1:M as a mosaic of recombined haplotype segments
h1:A, hA+1:B, . . . , hL+1:M copied from the reference haplotypes {hk1:M}Kk=1. (We have denoted
the recombination breakpoints partitioning the sites 1:M using the notation A,B, . . . , L—which
should be taken to represent a list of arbitrary length—to avoid double subscripts.) We may thus
decompose P (h1:M) as a sum over possible sets of recombination breakpoints A,B, . . . , L:

P (h1:M) =
∑

A,B,...,L

f(h1:A) · P (rec A | rec 0) · f(hA+1:B) · P (rec B | rec A)

· · · f(hL+1:M) · P (rec M | rec L), (3)

where

f(hX+1:Y ) =
#{k : hkX+1:Y = hX+1:Y }

K
(4)

denotes the frequency of the haplotype segment hX+1:Y in the reference and P (rec Y | rec X)

denotes the probability that the next recombination occurs between markers Y and Y + 1 given
that the previous recombination occurred between markers X and X + 1.

For simplicity, we make the approximation that the previous recombination occurred exactly at
marker X , and we let u denote the genetic distance from X to Y and v denote the genetic distance
from X to Y + 1. Then P (rec Y | rec X) is just the integral of the IBD length distribution—i.e.,
the distribution of lengths of most recent shared tracts between a given haplotype and our set of
K reference haplotypes—from u to v. (We note that in the context of typical HMM transition
probabilities, this recombination probability accumulates the probabilities of no transition from X

to Y together with the probability of a transition between Y and Y + 1.)
We approximate this distribution under the coalescent-based SMC model [34], obtaining the

following form (given in ref. [35]):

P (rec Y | rec X) =
1

(1 + u/a)2
− 1

(1 + v/a)2
, (5)

where a is a parameter specifying the expected IBD length. We provide a full discussion of this
formula and its relationship to the traditional Li-Stephens model in Section 4.

2.1.2 Distribution of genotypes given a diplotype

To model single-SNP discrepancies between a diplotype hα1:M , h
β
1:M and the observed genotypes

g1:M , we use the following simple approximation:

P (g1:M | hα1:M , h
β
1:M) ∝ εnerr , (6)
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where ε is an “error probability” parameter that roughly represents the chance of an allele modifi-
cation, and

nerr =
M∑
m=1

|gm − (hαm + hβm)| (7)

is the total number of allele modifications required to transform the diplotype (hα1:M , h
β
1:M) to match

the observed genotypes g1:M . We note that this intuition does not precisely produce equation (6):
strictly speaking, we should have an extra factor of 2 when |gm − (hαm + hβm)| = 1 (because the
discrepancy could occur on either haplotype), and we should also have a term (1 − ε)2M−nerr for
non-error probabilities (which we have instead approximated to 1). However, in practice, we have
observed that our inference is insensitive to the value of ε in the range 0.0003–0.01 (Supplementary
Table 12)—and in reality, the distributions of genotyping errors, mutations, and gene conversions
are much more complex anyway (see next paragraph)—so we adopt the approximation in equation
(6) due to its simplicity.

Fleshing out the above point, we note that because our copying model for h1:M as a mosaic
of segments hX+1:Y does not allow for mutation, the probability P (g1:M | hα1:M , h

β
1:M) must ac-

tually account for any mutations or gene conversions that occur along the lineages connecting
copied haplotype segments to the target sample. (To be completely precise, in the model we have
defined, hα1:M , h

β
1:M are actually best described as “mosaics of surrogate maternal and paternal

haplotypes”—i.e., composites of haplotypes shared with (distant) relatives of the mother and fa-
ther of the target sample—rather than the maternally- and paternally-derived haplotypes of the
target sample.) In theory, we could therefore improve the accuracy of our model by allowing the
error parameter ε to be a function of haplotype copying length (which scales inversely with time
to coalescence and thus with accumulated mutation rate along a lineage). However, for large ref-
erence panels, in which coalescences between target haplotypes and closest reference haplotypes
are relatively recent, single-SNP discrepancies are most often produced by genotyping error, so we
ignore this subtlety and use a fixed value of ε.

2.2 Algorithm overview: Fast computation and focused search

The Eagle2 phasing algorithm applies two main ideas to perform fast and accurate phase infer-
ence given the probabilistic model we have just described. The first idea is a new approach to
efficient computation of haplotype probabilities under a copying model (in our case, equation (3)).
Naı̈vely, these computations require exponential time. The standard approach to overcoming this
barrier is to observe that within aKHMM-state HMM, recursion allows computation of all marginal
probabilities (for all KHMM states at each of M positions) in O(MK2

HMM) time. In Eagle2, we
take a completely different recursive approach that computes the probability of a single haplotype
P (h1:M) in O(M) time—independent of the number of reference haplotypes K—after creation of
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a new data structure, the HapHedge, in O(MK) time. The HapHedge essentially consolidates all
reference haplotypes sharing a common prefix (starting at any given position) into a single atom of
data, thus eliminating future computation that scales with K.

Of course, being able to very rapidly compute the probability of a single haplotype is only
useful if we can identify a small subset of haplotype probabilities that are worth computing; to
this end, we need a second key idea. We perform a beam search from left to right across the
genome, propagating a small set of P likely diplotypes that ideally represent most of the posterior
probability mass in the full diplotype space. This approach essentially focuses computational effort
on a small subset of the diplotype space (vs. expending computation evenly across the space as in
HMM recursion), which is advantageous when most of the space is unlikely but difficult to discard
a priori.

We now expand on each of these ideas; we fully describe the haplotype probability computation
(aside from specification of the HapHedge, which we defer to Section 3), and we provide further
details and intuition for the beam search, which we formally treat in Section 2.3.

2.2.1 Efficiently computing haplotype probabilities

From equation (3), we wish to compute

P (h1:M) =
∑

A,B,...,L

f(h1:A) ·P (rec A | 0) ·f(hA+1:B) ·P (rec B | A) · · · f(hL+1:M) ·P (rec M | L).

(8)
It turns out that each factor of each summand in the above formula can be computed in O(1) time.
This statement is obvious for the recombination probabilities P (rec Y | rec X) (abbreviated as
P (rec Y | X) in the above), which are given by equation (5). As for the the haplotype segment fre-
quencies f(hX+1:Y ), the HapHedge data structure precisely supports these lookups in constant time
(assuming we have saved state information from previous lookups of the sub-segments hX+1:Y−1,
which is always the case for our algorithm).

The only remaining obstacle is the exponential sum over sets of recombination breakpoints
A,B, . . . , L, but conveniently, equation (8) naturally admits the recursion

P (h1:Y ) =
Y−1∑
X=1

P (h1:X) · f(hX+1:Y ) · P (rec Y | X). (9)

This recursion yields an O(M2) dynamic programming algorithm for computing P (h1:M).
We further reduce running time by restricting the sum over previous recombination points X
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to sites within a distance H of the current site Y :

P (h1:Y ) ≈
Y−1∑

X=Y−H

P (h1:X) · f(hX+1:Y ) · P (rec Y | X). (10)

That is, we allow the model to “forget” history older than H positions earlier in the genome, or
equivalently, we limit the maximum length of copied haplotypes toH . This approximation reduces
the cost of (approximately) computing P (h1:M) to O(MH). We set H to be the distance spanned
by 100 heterozygous sites in the target sample (corresponding to a few cM at the density of typical
genotyping arrays) or 1cM in very dense data; increasing H beyond this value appears to have
little effect (Supplementary Tables 10 and 13). (In Section 2.4, we will describe optimizations that
condense sites between consecutive target hets, hence the choice of this positional unit.)

2.2.2 Exploring only the likeliest diplotypes

The computational tricks above allow O(MH)-time estimation of P (h1:M) for any h1:M and thus
also P (hα1:M , h

β
1:M) and the desired posterior P (hα1:M , h

β
1:M | g1:M) for any given diplotype. We

are left with the challenge of determining which diplotypes to evaluate, which we treat as a search
problem. That is, we build diplotypes left-to-right across a chromosome, and at each successive
marker, for each diplotype, we consider extending each of its haplotypes to either the 0 or 1 al-
lele at the next marker m. This branching procedure increases the number of diplotypes under
consideration by a factor of 4, so to prevent an exponential explosion, we then prune the set of
diplotypes back down to at most P diplotypes {(hα(p)

1:m , h
β(p)
1:m )}Pp=1, keeping the most likely diplo-

types according to posterior probabilities P (hα1:m, h
β
1:m | g1:m) based on information thus far (i.e.,

markers 1:m). The total cost of the entire procedure is O(MHP ). The intuition behind the beam
search is that it greedily prioritizes likely diplotypes, and while future information may show that
some of these diplotypes have only low-probability extensions, the hope is that the beam will be
wide enough (i.e., contain enough diplotypes) to be robust to such local maxima.

The procedure that we have described is a good start, but we should be a bit skeptical: How can
we expect a small number of greedily-selected diplotypes to adequately represent the exponential
space of phase paths, especially at the scale of entire chromosomes? Even if the posterior distribu-
tion on diplotypes is locally well-concentrated, the space will inevitably grow exponentially, which
causes two opposite types of problems for our beam search: parallelism and degeneracy.

• Pitfall 1: Parallelism. This problem amounts to a lack of beam diversity in the recent past
(i.e., when restricted to the preceding local region of the genome): the beam can fragment
into several paths with similar probabilities and then follow each path along parallel trajec-
tories (i.e., identical phase paths after the split). This behavior is in fact highly likely if the
search space is locally well-constrained (as it tends to be), and it is problematic because
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fragmentation of the beam into parallel paths effectively reduces its width and thus its ability
to overcome local maxima.

• Pitfall 2: Degeneracy. This problem is a lack of beam diversity in the more distant past.
Our greedy search prioritizes best paths in an exponentially growing space, pruning away
less-likely paths; as such, the set of P diplotypes that comprise the beam front at any given
position will (hopefully) be a good representation of the diversity of paths through recent
positions. However, if we trace these P diplotypes back toward the start of the chromosome,
they will inevitably collapse into a single trajectory, providing a poor representation of the
marginal posterior on diplotypes at positions far behind the current position.

To overcome these pitfalls, we need to exercise greater finesse as we conduct our beam search
and perform phase inference. We make three main adjustments:

• Solution 1: Merging. To deal with parallelism, when we observe that two diplotypes un-
der consideration agree at the last 64 target hets, we merge the diplotypes (by pruning one
diplotype and adding its “weight” to the other diplotype; we defer a precise definition of this
procedure to the formal exposition in Section 2.3).

• Solution 2: Fixed-lag smoothing. To deal with degeneracy, we do not attempt to use the
final beam front of full diplotypes (hα1:M , h

β
1:M) to call phase throughout the chromosome.

Instead, we call the relative phase of a pair of consecutive hets using only a limited amount
of future (forward) information, a procedure similar to fixed-lag smoothing from signal pro-
cessing. Specifically, at any position m, we use the P diplotypes {(hα(p)

1:m , h
β(p)
1:m )}Pp=1 in the

beam front to call phase at a distance ∆=20 hets earlier (by examining the marginal poste-
rior distribution at the 19th- and 20th-most recent hets). Effectively, this choice means that
at any position m, we need the beam front to only be a good approximation of the marginal
posterior over “recent history” in the interval [m−∆,m].

• Solution 3: Refinement via constrained search. Finally, to improve the ability of the beam
search to overcome local maxima, we apply a two-step search. The first step is to run the
beam search described above; however, rather than simply making phase calls during this
run, we also estimate marginal posteriors for each consecutive pair of hets, thus obtaining
phase confidences. We then rank the phase confidences from most to least confident, identify
high-confidence phase calls, and run a second beam search in which we constrain phase
at high-confidence het pairs to match the first-iteration calls. The idea is that these phase
constraints propagate information backward along the chromosome, allowing the second-
iteration search better able to avoid obstacles while focusing attention on only the most
difficult phase calls.

11

Nature Genetics: doi:10.1038/ng.3679



2.2.3 Computational cost

The total computational cost of the algorithm we have described for beam propagation and phase
inference algorithm is O(MHP ), where M is the number of markers, H is the history parameter
governing maximum copying length in the mosaic model, and P is the number of paths in the beam
front. We also need to take into account the O(MK) cost of building the HapHedge data structure
on K reference haplotypes—but if we were to implement the exact algorithm described thus far,
this data structure would only need to be built once (rather than once per target individual).

Because the constant factor on HapHedge construction is quite small, we have chosen to instead
build individual-specific condensed HapHedge structures on subsets ofK = 10, 000 best reference
haplotypes per individual; doing so has the advantage of allowing the beam search to proceed one
het at a time rather than one marker at a time, thus reducing the constant factor on the O(MHP )

term. Given a panel of 2N reference haplotypes as input, our algorithm for selecting the best K
reference haplotypes for a given target sample currently runs in O(MN) time with a very small
constant factor via bit-level parallelism; thus, the overall procedure takes O(MN + MHP ) time
with small constant factors on both terms. Details of these optimizations are given in Section 2.4.

2.3 Formal inference procedure

We now present a formal exposition of our beam search-based inference procedure that implements
the preceding intuition.

2.3.1 Approximating marginal posteriors using ensembles of diplotypes

For each m = 1, . . . ,M , we wish to create an ensemble of ≤P weighted diplotypes, denoted
{(w(p), h

α(p)
1:m , h

β(p)
1:m )}p, with the property that the truncation of the ensemble to the “recent past”

[m − ∆,m] provides a good approximation of the true marginal posterior on diplotypes given
genotypes g1:m “seen so far.” That is, we want:

P (hαm−∆:m, h
β
m−∆:m | g1:m) (11)

∝∼
∑
p

w(p) · P̂ (h
α(p)
1:m , h

β(p)
1:m | g1:m) · 1(h

α(p)
m−∆:m, h

β(p)
m−∆:m = hαm−∆:m, h

β
m−∆:m),

where the P̂ term indicates the approximate posterior we described how to compute in equations
(1), (2), (6), and (10), and 1(·) denotes the indicator function. (We could have absorbed these terms
into the weights w(p), but we wish to view the weights as diplotype “multiplicities,” which will be
intuitive when we later discuss merging diplotypes.)

Is there hope of achieving the approximation suggested in equation (11) using only a small
ensemble of diplotypes? The feasibility of this task is essentially a question of whether or not the
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posterior P (hαm−∆:m, h
β
m−∆:m | g1:m) is concentrated on a small support—which should be the case

if phase is relatively well-constrained over the interval [m − ∆,m] (i.e., only a few phase paths
through this interval are likely).

2.3.2 Propagating diplotypes: Branching, merging, pruning, and calling

We construct the ensembles {(w(p), h
α(p)
1:m , h

β(p)
1:m )}p for m = 1, . . . ,M by propagating a “beam

front” across the chromosome. We initialize the beam front at m = 0 with a single diplotype on
no markers (containing no haplotype information) and proceed left to right, creating beam front m
(i.e., the m-th ensemble) from beam front m− 1 according to the following procedure.

Branching. For each diplotype {(w(p′), h
α(p′)
1:m−1, h

β(p′)
1:m−1)}p′ in ensemble m − 1 (indexed by p′),

we create its four possible extensions by appending hαm ∈ {0, 1} and hβm ∈ {0, 1} to hα(p′)
1:m−1 and

h
β(p′)
1:m−1. (We consider all four possible extensions to allow for single-SNP discrepancies due to

genotyping error, etc.) We give its weight w(p′) to all four possible extensions (for now), and we
compute the posterior probabilities P̂ (h

α(p′)
1:m−1h

α
m, h

β(p′)
1:m−1h

β
m | g1:m) in O(H) time by making use

of the recursion in equation (10), looking up previously computed values (i.e., applying dynamic
programming).

Merging and pruning. We now have up to 4P diplotypes on 1:m and need to reduce to an
ensemble of size ≤P . To do so, we employ two techniques: merging and pruning. First, if two
weighted diplotypes (w(p), h

α(p)
1:m , h

β(p)
1:m ) and (w(q), h

α(q)
1:m , h

β(q)
1:m ) are identical on the interval [m −

∆,m], i.e.,
h
α(p)
m−∆:m, h

β(p)
m−∆:m = h

α(q)
m−∆:m, h

β(q)
m−∆:m, (12)

then we merge them by eliminating diplotype q and giving its weight to diplotype p (after adjusting
for the relative posterior probabilities of diplotypes p and q). Explicitly, we augment the weight,
or “multiplicity,” of diplotype p as follows:

w(p) ← w(p) + w(q) · P̂ (h
α(q)
1:m , h

β(q)
1:m | g1:m)

P̂ (h
α(p)
1:m , h

β(p)
1:m | g1:m)

. (13)

We rapidly identify diplotypes to be merged by maintaining bitmasks representing their alleles in
the interval [m−∆,m]; identifying duplicate bitmask pairs thus amounts to sorting integer pairs.

Second, we sort all remaining diplotypes by weighted posterior probabilityw(p)·P̂ (h
α(p)
1:m , h

β(p)
1:m |

g1:m) and prune the ensemble to the top P weighted diplotypes. Additionally, we prune any diplo-
types with weighted probability less than ε2 times that of the leading diplotype, where ε is the
error probability parameter for single-SNP discrepancies (so ε2 corresponds to the penalty of two
errors).
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Calling phase. For a given pair of consecutive heterozygous sites u, v, we identify the largest
m such that the interval [m −∆,m] contains u and v, and we estimate the relative phase of those
sites by using the 2-dimensional marginal of the ensemble at the pair of positions (u, v):

P (hαu:v, h
β
u:v | g1:m) ∝∼

∑
p

w(p) · P̂ (h
α(p)
1:m , h

β(p)
1:m | g1:m) · 1(hα(p)

u:v , h
β(p)
u:v = hαu:v, h

β
u:v). (14)

2.3.3 Refining phase via constrained searches

The procedure that we have described above works quite well, but we can improve speed via the
following two-pass scheme. We first run a fast version of the propagation algorithm described
above (with reduced computational parameters H=30, P=30, and ∆=10), obtaining phase calls
and confidences at all pairs of consecutive hets and also obtaining error probabilities at homozy-
gous genotypes (by marginalizing to single homozygous sites). We then identify phase calls and
homozygous genotypes of confidence >99%, after which we perform a second, more accurate run
of the propagation algorithm with increased computational parameters (H=100, P=50, and ∆=20)
but much more limited branching: instead of considering all four haplotype extension combina-
tions at each step, we consider only extensions consistent with the high-confidence inferences from
the first step. Finally, we perform a constrained search with the same parameters in the reverse di-
rection, and we combine the phase probabilities from the constrained forward and reverse searches
(by averaging the marginal phase probabilities at consecutive hets) to produce final phase calls.

2.4 Optimizations

Having described the core theoretical components of the Eagle2 phasing algorithm, we now discuss
a few key optimizations that achieve important constant-factor speedups in practice.

2.4.1 Condensing blocks of markers homozygous in the target sample

Thus far, we have framed the phase inference problem in terms of computing posterior probabilities
P (hα1:M , h

β
1:M | g1:M), but we actually only wish to output inferred phase at markers m for which

the target sample is heterozygous, i.e., gm = 1. We note that the parental haplotypes hα1:M , h
β
1:M

are not completely determined when gm ∈ {0, 2} because of the possibility of single-SNP errors.
However, we have found that in practice, such errors are sufficiently strongly probabilistically
disfavored that simply forcing copied haplotypes to agree with the target allele at homozygous
sites results in almost no loss of accuracy (which seems reasonable given that alternative reference
haplotypes without errors are usually available).

We make use of this observation to “horizontally” condense the haplotype space conditional
on the genotypes of a given target sample. Specifically,
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• we retain full haplotype information hs(1:T ) at a subset of markers {s(1), . . . , s(T )} ⊆
{1, . . . ,M} containing all target-het sites (plus “spacer” sites that maintain a maximum dis-
tance of 0.5cM between consecutive sites s(t), s(t+ 1) to avoid excessive coarsening of the
model in runs of homozygosity), and

• within each interval (s(t), s(t+ 1)), we record only 1 bit et that indicates whether or not dis-
crepancies exist between the haplotype segment hs(t)+1:s(t+1)−1 and the (homozyous) target
genotypes gs(t)+1:s(t+1)−1.

This procedure produces a condensed representation {e0hs(1)e1 · · ·hs(T )eT} of the reference haplo-
types (Supplementary Fig. 1), as we describe in Section 2.4.2, but more importantly, it also enables
a more efficient inference algorithm that skips forward one het at a time. In target-homozygous
intervals (s(t), s(t + 1)), we simply need to check the bit et: if et = 1, then we must end the
haplotype segment currently being copied (and pay the transition cost of a recombination).

2.4.2 Creating individual-specific condensed haplotype trees

Performing inference on condensed haplotypes as described above substantially reduces the num-
ber of beam search propagation steps (from the number of markers M to roughly the number of
hets in the target sample). However, because the condensed representation of the reference haplo-
types is target sample-dependent, we need to rapidly generate a new HapHedge (on the condensed
reference) for each target sample analyzed, and we also need each such HapHedge to be compact
(because during multithreaded computation, each thread will need to build its own HapHedge for
the target sample it is analyzing). Both of these goals are reasonable given the O(MK)-time and
memory cost of building a HapHedge on K reference haplotypes, but a few optimizations help
reduce the constant factors.

Representing condensed haplotypes in a HapHedge. As described above, a condensed hap-
lotype e0hs(1)e1 · · ·hs(T )eT directly corresponds to a bit string in which we alternately represent
each actual allele hs(t) with 1 bit and each error bit et with 1 bit (Supplementary Fig. 1). Thus, the
binary representation of a condensed haplotype requires ≈2 bits per target het.

Converting reference haplotypes into condensed bit string representations gives a smaller bit
array; we next wish to build a “hedge” of haplotype prefix trees on this array rooted at every other
bit (specifically, at the bits directly encoding alleles hs(t)). We could directly build a HapHedge
on the bit array, but one additional optimization saves time and memory. Given that we prohibit
extension of a haplotype through any target-homozygous interval containing one or more discrep-
ancies, we may truncate a prefix upon reaching an error bit et = 1. Upon truncating prefixes in
this manner, many reference haplotypes collapse to the same prefix (for a given root location).
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Consequently, we use a slightly different data structure (HapHedgeMulti, described in Section 3.4)
that efficiently represents trees of haplotype prefixes with multiplicities.

Masking double-IBD regions. Previous authors have observed that some care is needed in sce-
narios where (i) the 2N reference haplotypes consist of imperfectly phased haplotype pairs fromN

individuals and (ii) the target sample contains “double-IBD” regions in which both chromosomal
segments are shared identical-by-descent with a reference sample, such that the diploid genotypes
of the reference and target samples match exactly in the region [12]. The first situation is guaran-
teed to arise when performing phasing without an external reference panel (because in this case,
the “reference haplotypes” are simply current haplotype estimates for other samples). The second
situation typically arises due to relatedness. Whatever the cause of this phenomenon, the result
is that a model built on all reference haplotypes as-is will likely copy both double-IBD reference
haplotypes when phasing the target sample, bringing along any phasing errors.

We apply the following procedure to guard against this pitfall. For a given target sample, we
pre-process each pair of reference haplotypes (derived from a single individual) from left to right,
identifying long regions of exact diploid genotype agreement. When such a region spans >20 split
points s(t), we mask both reference haplotypes throughout the double-IBD region (by setting error
bits et = 1, which forces a switch upon entering the region). When such a region spans 10–20 split
points s(t), we mask the reference haplotype with the shorter distance since the last error.

Selecting K best reference haplotypes. All of the computation that we have described in the
above paragraphs (to create a HapHedgeMulti data structure on a set of masked condensed refer-
ence haplotypes) scales linearly in the number of reference haplotypes and the number of markers.
This computation is quite efficient, but as described in Section 2.2.3, when the number of reference
haplotypes (2N ) is very large, restricting to a subset of K individual-specific conditioning haplo-
types saves time. To identify K “best” conditioning haplotypes, we rank reference haplotypes by
computing the number of discrepancies between each reference haplotype and the homozygous
genotypes of the target sample. As in our previous work [13], we perform computation on blocks
of up to 64 SNPs at once using bit arithmetic; thus, the total computational cost of subset selection
is O(MN) with a very small constant factor (plus O(N logN) for sorting, which is negligible in
practice).

We note that our discrepancy metric does not make use of inferred phase of the target genotypes
and produces a single set of conditioning haplotypes to use for the entire region being phased; as
such, our method for selecting conditioning haplotypes is much less sophisticated than that of
SHAPEIT2 [12]. However, Eagle2 is able to condition on thousands of haplotypes (vs. K=100
by default for SHAPEIT2), which we suspect makes selection of conditioning haplotypes much
less important. We also note that our O(MN) cost for selection of conditioning haplotypes is
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asymptotically slower than the method used by SHAPEIT3 (based on divisive clustering) [14].
Improving the scaling is a direction for future work (geared at million-sample data sets); for now,
the constant factor is so small that this cost negligible for N<100K.

2.5 Imputing missing genotypes

The phasing algorithm we have described ignores genotype data at markers for which the target
genotype is missing: such markers are ignored when condensing haplotypes. This behavior is ideal
for the task of phasing a single target sample using a reference panel, but if we wish to perform
phasing without a reference (or if we wish to use phased target samples to aid the phasing of other
target samples), we also need to impute missing genotypes.

It turns out that we can harness the HapHedge and beam search machinery to impute miss-
ing genotypes during phasing at almost no additional computational cost. The key idea is that a
haplotype prefix in a (condensed) HapHedge—which represents a cluster of haplotypes that match
(at non-ignored sites) along the prefix—can be “lifted” back to a specific reference haplotype in
the cluster. This fact is clear from our radix tree-based HapHedge implementation: we efficiently
represent tree edges via reference haplotype indices. Thus, given a (condensed) prefix segment
used in a diplotype, we can look up a reference haplotype that maps to this prefix, and then we can
check which alleles the reference haplotype has at any ignored sites within the prefix.

More precisely, given a diplotype ensemble {(w(p), h
α(p)
1:s(t), h

β(p)
1:s(t))}p, we impute missing target

genotypes in the interval (s(t−∆), s(t−∆+1))—i.e., between split points t−∆ and t−∆+1—
using the following sampling procedure (repeated 10 times). First, we sample a diplotype p from
the ensemble (according to the weighted posterior probabilities we have computed). Then, for
each of the haplotypes hα(p)

1:s(t) and hβ(p)
1:s(t) comprising the diplotype, we sample recombination splits

from right to left along the haplotype according to recursion (10). This procedure splits each of
the haplotypes hα(p)

1:s(t) and h
β(p)
1:s(t) into haplotype segments corresponding to HapHedge prefixes.

Usually, no recombination splits the interval (s(t −∆), s(t −∆ + 1)), in which case we take the
segment of hα(p)

1:s(t) (resp. hβ(p)
1:s(t)) containing this interval, lift it to a reference haplotype, and have

the reference haplotype vote on missing target alleles in (s(t−∆), s(t−∆ + 1)) according to its
alleles at those sites. In the event that a recombination splits the interval (s(t−∆), s(t−∆ + 1)),
we need to estimate where exactly the recombination took place (to know how far right to extend
the left reference haplotype and how far left to extend the right reference haplotype). We do so
by weighting each possible split point (between consecutive SNPs m and m + 1 in the interval
(s(t−∆), s(t−∆ + 1))) according to the genetic distance between m and m+ 1.

The above description captures the main thrust of our missing imputation method, but we men-
tion one additional engineering subtlety. Although we have no absolute assignment of haplotypes
to maternal vs. paternal chromosomes, we still need to align the pairs of votes we obtain across
different samples from the above procedure. We do so by locally aligning each sampled diplotype
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to the final phased haplotypes called by our phasing algorithm: when imputing missing genotypes
in the interval (s(t − ∆), s(t − ∆ + 1)), we find the closest heterozygous split site and align the
sampled diplotype to the final phased haplotypes according to their alleles at this site.

In theory, the procedure we have described could be extended to efficiently perform GWAS
imputation (of untyped sites) during phasing. However, we have observed that it achieves slightly
lower accuracy compared to standard imputation methods (e.g., Beagle v4.1 [25] and Minimac3).
We suspect that the reason is that imputation and phasing are sensitive to different aspects of
modeling: in particular, imputation requires careful modeling of both the maternal and paternal
haplotypes at all locations, whereas correctly identifying one long matching haplotype is enough
to perform accurate phasing. Thus, we currently believe GWAS imputation is still best done via
the pre-phasing paradigm [27] of phasing followed by haploid imputation (on phased haplotypes).
However, the algorithm above is well-suited to imputing of a small fraction of missing genotypes
(typically a few percent) during within-cohort pre-phasing: in this setting, achieving optimal im-
putation accuracy at the missing sites is not neeeded to achieve the goal of high phasing accuracy.

3 HapHedge data structure

The HapHedge data structure represents a sequence of haplotype prefix trees (i.e., binary trees
on haplotype prefixes) rooted at a given set of starting positions along a chromosome (Figure 1).
The key features of the HapHedge are linear-time construction, linear-memory representation, and
constant-time prefix extension (all with small constant factors). Specifically, the computational
costs associated with a HapHedge on K haplotypes and M markers are as follows:

• O(MK)-time construction using the positional Burrows-Wheeler transform (PBWT) [20].

• O(MK)-memory representation of the full “hedge” using radix trees. More precisely, to
represent Mt trees, 12MtK + MK/8 bytes are required. (If we begin a new tree every s
positions, Mt = M/s.)

• O(1)-time extension of a haplotype prefix (with haplotype frequency lookup).

We first describe the in-memory representation of a HapHedge and show how it supports constant-
time haplotype extension; we then describe HapHedge construction.

3.1 Compact representation of haplotype prefix trees in memory

The HapHedge data structure represents a sequence of haplotype prefix trees using radix trees
backed by a shared bit array containing all input haplotypes. In general, a radix tree compactifies
a prefix tree by merging any non-branching internal node with its parent. Each edge of a radix tree
is thus labeled with a string (representing merged edges) rather than a single character.

18

Nature Genetics: doi:10.1038/ng.3679



In our case, we wish to represent many trees representing different suffixes of the same under-
lying set of K haplotype bit strings. As such, we can represent an edge label in constant space
using only a pointer to the appropriate reference haplotype and the length of the label. We employ
this strategy as follows.

• We store the reference haplotypes in a bitArray using MK bits.

• For each prefix start location, we store a radix tree using the following data layout:

– 1 integer hap0: the index of the lexicographically first haplotype prefix

– K − 1 nodes, each containing:

∗ 1 integer mSplit: the location of the next branch (i.e., the next location polymor-
phic among haplotype prefixes in the current subtree, or M if all haplotypes in the
subtree are identical)

∗ 1 integer count0: the number of haplotype prefixes in the 0-subtree at mSplit

∗ 1 integer hap1: the index of the lexicographically first haplotype prefix in the
1-subtree at mSplit.

We note that the specification above does not contain any explicit pointers to indices of child
nodes. We are able to avoid storing such pointers by storing the K − 1 nodes of each radix tree in
the order that they are encountered during a pre-order traversal of the tree. Assuming this ordering
is chosen, the left child of a node is simply the node that follows it in memory, and the right child
of a node is the node count0 nodes after it. We present an example in Supplementary Fig. 2. (In
the orientation of Supplementary Fig. 2, “left” and “right” children are depicted as upper and lower
child nodes.)

We also note that if the data contains identical haplotypes (such that a radix tree in the usual
sense would contain a leaf representing k ≥ 2 identical haplotypes), we split any such leaves into
subtrees with k− 1 internal nodes. This way, the (extended) radix tree representing the haplotypes
always has exactly K − 1 internal nodes, and we preserve the property that the left child of a node
is simply the node that follows it in memory and the right child of a node is the node count0

nodes after it. The splitting of identical haplotypes into a subtree can be done arbitrarily; in our
implementation, we linearly peel off one haplotype at a time.

3.2 Constant-time haplotype prefix extension

To follow a haplotype prefix along a radix tree represented in the above form, we need to keep track
of some information beyond the current marker and the index of the current node. Specifically, the
complete state information that we maintain during prefix lookup is:

• 1 integer m: the current marker
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• 1 integer node: the index of the node at the end of the current edge

• 1 integer hap: the index of the lexicographically first haplotype prefix in the current subtree

• 1 integer count: the number of haplotype prefixes in the current subtree.

In particular, we note that the state for the root node of the radix tree starting at position m0 is
{m=m0, node=0, hap=hap0, count=K}. (We could of course have included the hap and count

data fields in the nodes of the HapHedge, but doing so would increase its memory footprint.)
The logic for extending a haplotype prefix (with state information) to the nextBit (either 0 or

1) is probably easiest understood in pseudocode.

Pseudocode for extending a haplotype prefix.

INPUT:

- state.{m,node,hap,count}: current state information

- nextBit: bit (0 or 1) with which to attempt extension of prefix

OUTPUT:

- if successful extension, update state and return SUCCESS

- else, return FAILURE

function extend(state, nextBit) {

if (state.count == 1 || nodes[state.node].mSplit > state.m) {

if (bitArray(state.hap, state.m) != nextBit)

return FAILURE

}

else {

if (nextBit == 0) {

state.count = nodes[state.node].count0

state.node++

}

else {

state.hap = nodes[state.node].hap1

c0 = nodes[state.node].count0

state.node += c0

state.count -= c0

}

}

state.m++

return SUCCESS

}
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3.3 Linear-time HapHedge construction

The key insight for efficient HapHedge construction is that the positional Burrows-Wheeler trans-
form [20] already encodes all the information we need to construct the haplotype radix tree at each
desired root marker in linear time. Specifically, Algorithm 2 of ref. [20] shows how to iteratively
construct a positional suffix array a[] and divergence array d[] at each marker. (Ref. [20] works
from left to right and hence constructs positional prefix arrays rather than suffix arrays, but we
need only reverse the direction of processing.) At each marker m, the positional suffix array a[]

precisely gives the lexicographic order on haplotype prefixes starting from m—i.e., the in-order
traversal of leaves in the radix tree we wish to construct—and the divergence array d[] encodes
the branching depths mSplit of internal nodes. Thus, if we wish to construct a radix tree on pre-
fixes starting at m, we can perform an in-order traversal of the tree (before explicitly representing
it) by walking through the a[] and d[] arrays, recovering the tree topology as we go based on
relative divergence depths d.

The observations above give the following two-step algorithm for constructing a radix tree
rooted at marker m (on reaching m while running PBWT Algorithm 2 from right to left). Given
the matrices a[] and d[] for marker m, we first construct a temporary (less memory-efficient)
explicit representation of the radix tree using the in-order traversal described above. Second, we
perform a pre-order traversal of our temporary representation to generate the memory-efficient
representation we desire. For details, see the implementation in HapHedge.cpp.

3.4 Extension to haplotypes with multiplicities: HapHedgeMulti

As we noted in Section 2.4.2, it is advantageous to modify our radix tree representation when rep-
resenting condensed haplotypes because the number of unique condensed haplotype prefixes (after
truncating at error bits et = 1) is typically much smaller than the number of input haplotypes. We
call the modified data structure the HapHedgeMulti. Conceptually, the ideas behind the represen-
tation of haplotypes and the construction and prefix extension algorithms remain unchanged, so
we only highlight a few main implementational differences.

• A HapHedgeMulti radix tree contains only Kuniq − 1 internal nodes (vs. K − 1 nodes in a
HapHedge radix tree), where Kuniq is the number of unique prefixes.

• Each node of a HapHedgeMulti radix tree contains 5 integer data fields: the 3 fields mSplit,
count0, and hap1 from before, plus 2 new fields node0 and node1 giving the indices of
child nodes (or −1 if a child is a leaf). (These additional fields are needed because node
indices can no longer be inferred from counts due to haplotype multiplicities.)

• Truncation of prefixes at bits indicating errors at target homs (Section 2.4.2) is easily accom-
plished while running PBWT Algorithm 2 by changing values at the end of the divergence
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array d[] to M . Specifically, if bit m encodes an error bit et, then after the first prefix with
1 at bit m, we change d[*] to M for all subsequent prefixes (which also must have 1 at bit
m). This modification effectively equates all prefixes with 1 at bit m, thus accomplishing
the truncation, and the equivalence is naturally propagated to radix tree construction and to
subsequent PBWT iterations (both of which only see information about already-processed
markers as represented by the matrices a[] and d[].

Again, implementation details can be found in the file HapHedge.cpp.

4 Appendix: Recombination probability models

Here we provide a more complete discussion of equation (5) for the probability that a copied
haplotype has length between u and v Morgans. This probability is equal to the integral (from u

to v) of the IBD length distribution: that is, the distribution of lengths of most recent shared tracts
between a given haplotype and a set of K reference haplotypes (in a population containing 2Ne

haplotypes).
We first consider the Li-Stephens model [21]. Under this model, haplotype copying is memo-

ryless (as one moves left-to-right across the genome), and the IBD length distribution decays ex-
ponentially with rate 4Ne/K. Letting a denote the inverse of this rate (i.e., the mean IBD length),
this distribution is given by

fLi−Stephens(x) =
1

a
e−x/a, (15)

where x denotes IBD length.
In contrast, under the coalescent model, haplotype copying is not memoryless. Intuitively,

the longer one has spent copying a haplotype, the longer one should expect to continue copying
that haplotype, because long shared haplotypes indicate recent IBD. The full coalescent model
is complex [36], but the SMC model [34], which assumes that IBD segments are delimited by
recombination events, provides a good approximation for long segments [35]. Under this model,
the IBD length distribution is given by equation (10) of ref. [35] and has the form

f(x) =
2/a

(1 + x/a)3
, (16)

where a is again the mean IBD length. Integrating this density from u to v gives equation (5):∫ v

u

2/a

(1 + x/a)3
dx =

1

(1 + u/a)2
− 1

(1 + v/a)2
. (17)

In practice, we lower-bound this probability at 10−6 to increase robustness to recombination map
errors.
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Despite our intuition that the coalescent-based model should better-represent true haplotype
sharing, Eagle2 achieved near-identical phasing accuracy using either recombination probability
model (Supplementary Table 11). Moreover, phasing accuracy was quite insensitive to the ex-
pected IBD length parameter a across the range of lengths we tested (0.5cM–4cM). These obser-
vations lead us to hypothesize that the bulk of the inference comes down simply to whether or not
a long shared reference haplotype exists; if such a haplotype does exist, we suspect that the precise
probabilistic modeling does not make much difference.
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Supplementary Figure 1. Conversion of reference haplotypes to condensed form. This figure
illustrates the procedure used to create condensed reference haplotypes given the genotypes of a
specific target sample (Supplementary Note Section 2.4.2). Alleles are directly coded in 1 bit
each at a subset of sites s(1), . . . , s(T ) consisting of target het sites plus spacer sites as needed to
break up runs of homozygosity (ROH). In each region between directly-coded alleles, all target
genotypes are either homozygous or missing; we encode the presence or absence of discrepancies
between the reference haplotype and the target in 1 bit. (Finally, we pad each condensed
haplotype with hs(0) = 0 and hs(T+1) = 0, eT+1 = 0 for implementational convenience.)
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Supplementary Figure 2. A haplotype prefix tree in radix format. This example shows the
HapHedge representation of a single tree on K = 5 haplotypes rooted at the first of M = 6
markers. A HapHedge will typically contain many trees rooted at different starting positions, all
sharing the same bitArray, but each with its own hap0 and nodes.
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Supplementary Table 1. Data sets analyzed.

Data set Samples (N) Indep. trios Markers (M) Heterozygosity Missingness
UK Biobank 152,248 72 707,524 0.173 0.9%
GERA European chip 62,318 200 657,184 0.257 0.6%
GERA African chip 3,826 3 851,970 0.216 1.1%
GERA East Asian chip 5,188 7 694,877 0.240 0.6%
GERA Latino chip 7,154 3 776,817 0.225 1.4%

We report basic sample and SNP statistics for the UK Biobank and GERA data sets analyzed. The
UK Biobank statistics reflect the light QC we performed (described in Online Methods); the
GERA statistics correspond exactly to the data we obtained from dbGaP. “Independent trios”
indicate numbers of non-overlapping mother-father-child trios. “Markers” indicate autosomal
SNP counts. Heterozygosity and missingness are means over all samples and SNPs.
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Supplementary Table 2. Running time and accuracy of reference-based phasing in UK
Biobank benchmarks.

(a) CPU time per target genome
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle1 1.2 min 1.4 min 1.6 min 2.0 min
Eagle2 K=5K 1.1 min 1.1 min 1.1 min 1.2 min
Eagle2 K=10K 1.5 min 1.6 min 1.6 min 1.6 min
Eagle2 K=20K 2.4 min 2.3 min 2.3 min 2.5 min
Eagle2 K=40K 3.4 min 4.7 min 4.2 min 4.4 min
SHAPEIT2 K=50 –no-mcmc 2.1 min 2.6 min 3.6 min 4.7 min
SHAPEIT2 K=100 –no-mcmc 2.6 min 3.1 min 3.7 min 5.3 min
SHAPEIT2 K=200 –no-mcmc 3.7 min 4.1 min 4.9 min 6.4 min
SHAPEIT2 K=400 –no-mcmc 5.6 min 6.1 min 6.9 min 8.5 min
SHAPEIT2 K=50 13.7 min 20.8 min 30.3 min 53.8 min
SHAPEIT2 K=100 18.0 min 26.0 min 36.0 min 60.8 min
SHAPEIT2 K=200 26.2 min 34.2 min 44.9 min 71.0 min
SHAPEIT2 K=400 41.6 min 49.7 min 60.9 min 87.8 min

(b) Mean switch error rate (s.e.m.)
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle1 1.35% (0.04%) 0.88% (0.03%) 0.65% (0.03%) 0.40% (0.02%)
Eagle2 K=5K 0.98% (0.03%) 0.75% (0.03%) 0.63% (0.03%) 0.46% (0.02%)
Eagle2 K=10K 0.87% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.39% (0.02%)
Eagle2 K=20K 0.79% (0.02%) 0.58% (0.02%) 0.47% (0.02%) 0.34% (0.02%)
Eagle2 K=40K 0.76% (0.02%) 0.54% (0.02%) 0.43% (0.02%) 0.31% (0.02%)
SHAPEIT2 K=50 –no-mcmc 3.82% (0.06%) 3.64% (0.07%) 3.58% (0.08%) 3.64% (0.07%)
SHAPEIT2 K=100 –no-mcmc 2.35% (0.05%) 2.14% (0.05%) 2.09% (0.05%) 2.06% (0.06%)
SHAPEIT2 K=200 –no-mcmc 1.65% (0.04%) 1.39% (0.04%) 1.30% (0.04%) 1.23% (0.04%)
SHAPEIT2 K=400 –no-mcmc 1.28% (0.03%) 1.01% (0.03%) 0.89% (0.03%) 0.78% (0.03%)
SHAPEIT2 K=50 1.23% (0.03%) 0.86% (0.03%) 0.69% (0.03%) 0.49% (0.02%)
SHAPEIT2 K=100 1.04% (0.03%) 0.74% (0.03%) 0.58% (0.02%) 0.41% (0.02%)
SHAPEIT2 K=200 0.93% (0.03%) 0.65% (0.02%) 0.52% (0.02%) 0.37% (0.02%)
SHAPEIT2 K=400 0.85% (0.02%) 0.60% (0.02%) 0.47% (0.02%) 0.34% (0.02%)

(This table provides numeric data plotted in Figure 2 along with additional benchmarks.) We
performed reference-based phasing using reference panels generated from Nref = 15,000, 30,000,
50,000, or 100,000 UK Biobank samples. We analyzed chromosomes 1, 5, 10, 15, and 20 (≈25%
of the genome) in 4-threaded computation on 2.27 GHz Intel Xeon L5640 processors. To obtain
CPU time per target genome, we then scaled up computation time by a factor of 4; see
Supplementary Table 3 for details. We assessed accuracy on the 70 UK Biobank
European-ancestry trio children, aggregating switch errors over the five chromosomes analyzed,
and computing means and s.e.m. over the 70 samples. The default values of K for SHAPEIT2
and Eagle2 are 100 and 10,000, respectively.
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Supplementary Table 3. Computational cost of reference-based phasing in UK Biobank
benchmarks at different target sample sizes.

(a) CPU time and memory for phasing chr1,5,10,15,20 of N target = 72 samples
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle1 0.6 hr / 2.8 GB 0.9 hr / 4.8 GB 1.2 hr / 6.7 GB 2.0 hr / 10.9 GB
Eagle2 K=5K 0.4 hr / 1.4 GB 0.4 hr / 2.0 GB 0.4 hr / 2.9 GB 0.6 hr / 5.5 GB
Eagle2 K=10K 0.5 hr / 1.4 GB 0.5 hr / 2.1 GB 0.6 hr / 3.0 GB 0.7 hr / 5.4 GB
Eagle2 K=20K 0.7 hr / 1.6 GB 0.8 hr / 2.3 GB 0.8 hr / 3.4 GB 0.9 hr / 5.7 GB
Eagle2 K=40K 1.0 hr / 1.9 GB 1.4 hr / 2.5 GB 1.3 hr / 3.8 GB 1.5 hr / 6.2 GB
SHAPEIT2 K=50 –no-mcmc 1.1 hr / 0.6 GB 2.1 hr / 1.0 GB 3.0 hr / 1.7 GB 5.8 hr / 3.3 GB
SHAPEIT2 K=100 –no-mcmc 1.4 hr / 0.7 GB 2.3 hr / 1.1 GB 3.4 hr / 1.8 GB 5.9 hr / 3.4 GB
SHAPEIT2 K=200 –no-mcmc 1.7 hr / 0.8 GB 2.7 hr / 1.2 GB 3.7 hr / 2.0 GB 6.1 hr / 3.5 GB
SHAPEIT2 K=400 –no-mcmc 2.3 hr / 1.2 GB 3.3 hr / 1.6 GB 4.4 hr / 2.3 GB 7.0 hr / 3.8 GB
SHAPEIT2 K=50 4.3 hr / 0.6 GB 6.9 hr / 1.0 GB 10.7 hr / 1.7 GB 19.2 hr / 3.3 GB
SHAPEIT2 K=100 5.4 hr / 0.6 GB 8.4 hr / 1.0 GB 12.2 hr / 1.7 GB 20.7 hr / 3.3 GB
SHAPEIT2 K=200 7.8 hr / 0.6 GB 10.7 hr / 1.0 GB 14.5 hr / 1.7 GB 23.4 hr / 3.3 GB
SHAPEIT2 K=400 12.4 hr / 0.6 GB 15.4 hr / 1.0 GB 19.4 hr / 1.7 GB 28.5 hr / 3.3 GB

(b) CPU time and memory for phasing chr1,5,10,15,20 of N target = 1,072 samples
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle1 5.7 hr / 3.0 GB 6.7 hr / 4.7 GB 7.8 hr / 6.8 GB 10.3 hr / 11.2 GB
Eagle2 K=5K 5.0 hr / 1.4 GB 5.1 hr / 2.1 GB 5.1 hr / 3.1 GB 5.5 hr / 5.4 GB
Eagle2 K=10K 6.9 hr / 1.5 GB 7.1 hr / 2.2 GB 7.3 hr / 3.1 GB 7.3 hr / 5.6 GB
Eagle2 K=20K 10.6 hr / 1.7 GB 10.6 hr / 2.4 GB 10.6 hr / 3.4 GB 11.4 hr / 5.7 GB
Eagle2 K=40K 15.2 hr / 2.0 GB 21.0 hr / 2.9 GB 18.7 hr / 3.8 GB 20.0 hr / 6.1 GB
SHAPEIT2 K=50 –no-mcmc 9.8 hr / 1.6 GB 12.9 hr / 2.0 GB 18.1 hr / 2.7 GB 25.2 hr / 4.3 GB
SHAPEIT2 K=100 –no-mcmc 12.2 hr / 1.7 GB 15.3 hr / 2.1 GB 18.7 hr / 2.8 GB 28.0 hr / 4.4 GB
SHAPEIT2 K=200 –no-mcmc 16.9 hr / 1.9 GB 19.8 hr / 2.3 GB 23.9 hr / 3.0 GB 32.8 hr / 4.5 GB
SHAPEIT2 K=400 –no-mcmc 25.6 hr / 2.2 GB 28.8 hr / 2.6 GB 33.0 hr / 3.3 GB 42.5 hr / 4.8 GB
SHAPEIT2 K=50 61.6 hr / 1.6 GB 93.5 hr / 2.0 GB 137.1 hr / 2.7 GB 243.4 hr / 4.2 GB
SHAPEIT2 K=100 80.3 hr / 1.6 GB 116.7 hr / 2.0 GB 162.3 hr / 2.7 GB 274.0 hr / 4.2 GB
SHAPEIT2 K=200 117.1 hr / 1.6 GB 153.1 hr / 2.0 GB 201.7 hr / 2.7 GB 319.1 hr / 4.2 GB
SHAPEIT2 K=400 185.5 hr / 1.6 GB 222.4 hr / 2.0 GB 273.0 hr / 2.7 GB 394.2 hr / 4.2 GB

To benchmark per-sample computational cost of reference-based phasing, we performed two sets
of analyses: one in which we phased only N target = 72 UK Biobank trio children, and another in
which we phased an additional 1,000 randomly selected samples. We then subtracted the N target =
72 CPU times from the N target = 1,072 CPU times to obtain the incremental cost of phasing 1,000
samples. This procedure was necessary to adjust for initialization costs (e.g., reading the
reference data and synchronizing it with the target data), which account for a non-neglibible
fraction of total computational cost when N target is small. Finally, we divided by 1,000 to obtain
per-sample costs and multiplied by 4 to scale up from 25% of the genome (chr1,5,10,15,20) to
obtain the numbers plotted in Fig. 2a and reported in Supplementary Table 2.

We performed runs using 4 cores of a 2.27 GHz Intel Xeon L5640 processor. We chose to report
CPU times rather than wall clock run times because we observed less run-to-run variability in
CPU times on the shared compute cluster we used for these benchmarks. (Both Eagle and
SHAPEIT perform efficient multithreading, so the choice of CPU time vs. wall time has little
effect on relative performance.) 31
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Supplementary Table 4. Accuracy of reference-based phasing in GERA benchmarks using
varying numbers of conditioning haplotypes.

(a) Mean switch error rate (s.e.m.), trio parents
European chip African chip East Asian chip Latino chip
Nref = 61,684 Nref =3,817 Nref = 5,164 Nref = 7,144

Method Ntarget = 400 Ntarget = 6 Ntarget = 14 Ntarget = 6
SHAPEIT2 K=100 1.31% (0.04%) 3.21% (0.08%) 2.24% (0.12%) 2.42% (0.05%)
SHAPEIT2 K=200 1.23% (0.04%) 2.93% (0.07%) 2.11% (0.11%) 2.29% (0.05%)
SHAPEIT2 K=400 1.17% (0.04%) 2.75% (0.06%) 2.02% (0.11%) 2.18% (0.04%)
SHAPEIT2 K=100 –no-mcmc 2.83% (0.05%) 5.29% (0.15%) 3.34% (0.14%) 3.91% (0.08%)
SHAPEIT2 K=200 –no-mcmc 2.11% (0.05%) 4.16% (0.11%) 2.80% (0.13%) 3.14% (0.06%)
SHAPEIT2 K=400 –no-mcmc 1.72% (0.05%) 3.51% (0.09%) 2.48% (0.12%) 2.72% (0.06%)
Eagle1 1.36% (0.04%) 3.87% (0.09%) 2.71% (0.14%) 2.65% (0.05%)
Eagle2 K=5K 1.32% (0.04%) 2.64% (0.06%) 2.00% (0.10%) 2.17% (0.04%)
Eagle2 K=10K 1.24% (0.04%) 2.48% (0.05%) 1.93% (0.10%) 2.08% (0.04%)
Eagle2 K=20K 1.17% (0.04%) 2.48% (0.05%) 1.95% (0.10%) 2.06% (0.04%)

(b) Mean switch error rate (s.e.m.), trio children
European

Nref = 61,684
Method Ntarget = 200
SHAPEIT2 K=100 0.90% (0.04%)
SHAPEIT2 K=200 0.82% (0.04%)
SHAPEIT2 K=400 0.75% (0.04%)
SHAPEIT2 K=100 –no-mcmc 2.46% (0.06%)
SHAPEIT2 K=200 –no-mcmc 1.73% (0.05%)
SHAPEIT2 K=400 –no-mcmc 1.31% (0.05%)
Eagle1 0.95% (0.04%)
Eagle2 K=5K 0.93% (0.04%)
Eagle2 K=10K 0.84% (0.04%)
Eagle2 K=20K 0.78% (0.04%)

(This table provides numeric data plotted in Figure 3 along with additional benchmarks.)

(a) We phased trio parents in each GERA sub-cohort using a reference panel generated from all
other non-familial samples in the same sub-cohort. We ran each method with default parameter
settings on all 22 autosomes and computed aggregate mean switch error rates (s.e.m.). Standard
errors for the European-ancestry sub-cohort are over 400 parent samples. Standard errors for the
other three sub-cohorts are over 25 SNP blocks.

(b) We phased GERA trio children on the European chip sub-cohort using a reference panel
generated from all other non-familial European chip samples. (We did not perform this analysis
on the other sub-cohorts due to the low numbers of trios.) We note that accuracy is higher across
all methods for trio children vs. trio parents, perhaps due to greater levels of (within-Europe)
admixture in the children.
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Supplementary Table 5. Accuracy of reference-based phasing using the 1000 Genomes and
HRC panels.

(a) Mean switch error rates (s.e.m.) using the 1000 Genomes Project Phase 3 panel
CEU CHS PEL PJL YRI

Method Ntarget = 32 Ntarget = 31 Ntarget = 30 Ntarget = 15 Ntarget = 19
SHAPEIT2 3.52% (0.06%) 6.51% (0.11%) 4.45% (0.16%) 4.75% (0.24%) 3.71% (0.11%)
SHAPEIT2 –no-mcmc 4.83% (0.05%) 7.79% (0.11%) 5.71% (0.17%) 6.41% (0.26%) 4.97% (0.11%)
Eagle1 5.40% (0.08%) 8.98% (0.14%) 6.57% (0.21%) 6.89% (0.35%) 6.72% (0.11%)
Eagle2 3.27% (0.06%) 6.38% (0.11%) 4.51% (0.19%) 4.35% (0.21%) 3.61% (0.10%)

(b) Mean switch error rates (s.e.m.) using the HRC panel
CEU CHS PEL PJL YRI

Method Ntarget = 32 Ntarget = 31 Ntarget = 30 Ntarget = 15 Ntarget = 19
SHAPEIT2 1.60% (0.05%) 7.78% (0.08%) 4.65% (0.15%) 5.97% (0.19%) 4.68% (0.10%)
SHAPEIT2 –no-mcmc 3.39% (0.08%) 9.56% (0.09%) 6.92% (0.10%) 9.00% (0.13%) 6.51% (0.09%)
Eagle1 1.89% (0.06%) 10.04% (0.10%) 6.30% (0.21%) 7.35% (0.17%) 7.76% (0.15%)
Eagle2 1.36% (0.04%) 7.52% (0.09%) 4.78% (0.16%) 5.22% (0.15%) 4.75% (0.09%)

We phased 1000 Genomes Phase 3 trio children on chromosome 1 using the 1000 Genomes
Project Phase 3 panel or the Haplotype Reference Consortium panel (excluding these trios). To
simulate a typical use case, we restricted the data to 31,853 markers (genotyped by 23andMe).
We report mean switch error rates (s.e.m.) over trio samples in each population with >1 trio.
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Supplementary Table 6. Accuracy of phasing non-European UK Biobank samples using
increasing numbers of European reference samples.

Nmismatched
Nmatched Method 0 5,000 15,000 50,000 147,000

1,000 Eagle2 5.25% (0.21%) 5.23% (0.25%) 5.17% (0.24%) 4.95% (0.21%) 4.69% (0.22%)
SHAPEIT2 5.89% (0.21%) 5.67% (0.23%) 5.87% (0.24%) 6.01% (0.24%) 5.83% (0.23%)

2,000 Eagle2 4.12% (0.17%) 4.17% (0.19%) 4.11% (0.20%) 4.06% (0.18%) 3.93% (0.17%)
SHAPEIT2 4.82% (0.17%) 4.60% (0.22%) 4.80% (0.22%) 4.90% (0.22%) 4.88% (0.21%)

4,000 Eagle2 3.37% (0.16%) 3.26% (0.16%) 3.28% (0.16%) 3.29% (0.15%) 3.24% (0.15%)
SHAPEIT2 3.96% (0.16%) 3.75% (0.16%) 3.83% (0.17%) 3.88% (0.18%) 4.00% (0.17%)

To investigate the effect of including ancestry-mismatched reference samples on reference-based
phasing accuracy, we phased trio parents in the two non-European (specifically, Indian and
Caribbean) UK Biobank trios using subsets of UK Biobank haplotypes (from a run of Eagle1 on
all samples together) containing increasing numbers of European haplotypes. Specifically, we
partitioned the non-trio samples into an “ancestry-matched” set of 4,708 samples that
self-reported Mixed, Asian, or Black ancestry and an “ancestry-mismatched” set of the remaining
147,324 predominantly European samples. We then created reference panels containing
combinations of 1,000, 2,000, or 4,000 ancestry-matched samples and 0, 5,000, 15,000, 50,000,
or 147,000 ancestry-mismatched samples. We used these reference panels to phase the 4
non-European parents using either Eagle2 or SHAPEIT2. We report mean switch error rates over
chromosomes 15–22 (s.e.m.).
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Supplementary Table 7. Computational cost and accuracy of non-reference-based phasing
in the UK Biobank cohort.

(a) Wall clock time and memory cost per genome
Method N = 5K N = 15K N = 50K N = 150K
SHAPEIT2 55.7 hr / 5.3 GB 230.9 hr / 15.2 GB – –
Eagle1 8.1 hr / 4.4 GB 30.4 hr / 8.0 GB 138.6 hr / 21.4 GB 715.7 hr / 56.7 GB
Eagle2 K=5K 10.1 hr / 4.8 GB 29.0 hr / 7.4 GB 98.0 hr / 17.1 GB 415.4 hr / 45.8 GB
Eagle2 K=10K 11.8 hr / 5.5 GB 34.2 hr / 7.4 GB 118.2 hr / 17.1 GB 464.3 hr / 45.8 GB
Eagle2 K=20K 12.9 hr / 5.4 GB 44.9 hr / 7.4 GB 153.2 hr / 17.2 GB 574.9 hr / 45.8 GB
Eagle2 K=40K 13.4 hr / 5.2 GB 59.9 hr / 8.1 GB 237.0 hr / 17.1 GB 806.5 hr / 45.8 GB

(b) Mean switch error rate (s.e.m.)
Method N = 5K N = 15K N = 50K N = 150K
SHAPEIT2 1.38% (0.03%) 0.86% (0.03%) – –
Eagle1 2.38% (0.05%) 1.30% (0.04%) 0.59% (0.03%) 0.31% (0.02%)
Eagle2 K=5K 1.36% (0.03%) 1.00% (0.03%) 0.65% (0.03%) 0.41% (0.02%)
Eagle2 K=10K 1.23% (0.03%) 0.85% (0.03%) 0.53% (0.02%) 0.35% (0.02%)
Eagle2 K=20K 1.23% (0.03%) 0.75% (0.02%) 0.46% (0.02%) 0.30% (0.02%)
Eagle2 K=40K 1.23% (0.03%) 0.73% (0.02%) 0.41% (0.02%) 0.27% (0.02%)

(This table provides numeric data plotted in Figure 5 along with benchmarks for additional
parameter settings of Eagle2.) We benchmarked Eagle2 and other available phasing methods on
N=5,000, 15,000 50,000, and 150,000 UK Biobank samples (including trio children and
excluding trio parents). (a) Total wall clock time and maximum memory used for genome-wide
phasing on a 16-core 2.60 GHz Intel Xeon E5-2650 v2 processor. (We analyzed a total of 174,595
markers on chromosomes 1, 5, 10, 15, and 20, representing ≈25% of the genome, and scaled up
running times by a factor of 4; see Supplementary Table 8 for per-chromosome data.) SHAPEIT2
was unable to complete the N=50,000 chr1 and chr5 analyses and was unable to complete any of
the N=150,000 analyses in 5 days, the run time limit for single compute jobs. (b) Mean switch
error rate (s.e.m.) over 70 European-ancestry trios.
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Supplementary Table 8. Per-chromosome computational cost and accuracy of
non-reference-based phasing in the UK Biobank cohort.

(a) Running time and memory cost
SHAPEIT2 Eagle1 Eagle2

N chrom K=5K K=10K K=20K K=40K
5K chr20 1.5 hr / 1.8 GB 0.2 hr / 1.3 GB 0.3 hr / 1.5 GB 0.3 hr / 2.2 GB 0.4 hr / 2.0 GB 0.3 hr / 2.3 GB
5K chr15 1.8 hr / 2.1 GB 0.3 hr / 1.7 GB 0.4 hr / 2.3 GB 0.4 hr / 2.5 GB 0.5 hr / 2.3 GB 0.4 hr / 2.6 GB
5K chr10 2.8 hr / 3.2 GB 0.4 hr / 2.4 GB 0.5 hr / 3.3 GB 0.6 hr / 3.5 GB 0.7 hr / 2.7 GB 0.7 hr / 3.3 GB
5K chr5 3.4 hr / 3.9 GB 0.4 hr / 3.0 GB 0.6 hr / 3.0 GB 0.7 hr / 3.3 GB 0.7 hr / 4.1 GB 0.8 hr / 3.9 GB
5K chr1 4.5 hr / 5.3 GB 0.7 hr / 4.4 GB 0.8 hr / 4.8 GB 0.9 hr / 5.5 GB 1.0 hr / 5.4 GB 1.1 hr / 5.2 GB

15K chr20 5.9 hr / 5.1 GB 0.8 hr / 2.9 GB 0.8 hr / 2.8 GB 0.9 hr / 2.9 GB 1.3 hr / 3.3 GB 1.6 hr / 3.5 GB
15K chr15 7.4 hr / 6.1 GB 1.0 hr / 3.4 GB 0.9 hr / 3.2 GB 1.1 hr / 3.4 GB 1.5 hr / 3.8 GB 2.0 hr / 4.1 GB
15K chr10 10.8 hr / 9.5 GB 1.5 hr / 5.1 GB 1.6 hr / 4.5 GB 1.8 hr / 4.6 GB 2.2 hr / 5.2 GB 3.0 hr / 5.1 GB
15K chr5 13.8 hr / 11.3 GB 1.7 hr / 6.1 GB 1.7 hr / 5.3 GB 2.0 hr / 5.3 GB 2.7 hr / 5.5 GB 3.6 hr / 6.1 GB
15K chr1 19.8 hr / 15.2 GB 2.6 hr / 8.0 GB 2.3 hr / 7.4 GB 2.7 hr / 7.4 GB 3.6 hr / 7.4 GB 4.8 hr / 8.1 GB
50K chr20 46.5 hr / 16.8 GB 3.9 hr / 7.7 GB 2.7 hr / 5.8 GB 3.1 hr / 5.7 GB 4.7 hr / 5.7 GB 6.2 hr / 5.7 GB
50K chr15 59.0 hr / 20.2 GB 4.6 hr / 9.0 GB 3.3 hr / 7.0 GB 4.0 hr / 6.9 GB 5.0 hr / 7.0 GB 7.6 hr / 7.0 GB
50K chr10 93.8 hr / 31.4 GB 6.6 hr / 12.9 GB 5.0 hr / 10.3 GB 6.4 hr / 10.3 GB 7.4 hr / 10.3 GB 13.2 hr / 10.3 GB
50K chr5 – 8.2 hr / 15.4 GB 5.7 hr / 12.3 GB 6.8 hr / 12.3 GB 9.0 hr / 12.3 GB 13.6 hr / 12.3 GB
50K chr1 – 11.4 hr / 21.4 GB 7.9 hr / 17.1 GB 9.2 hr / 17.1 GB 12.2 hr / 17.2 GB 18.6 hr / 17.1 GB

150K chr20 – 19.9 hr / 20.1 GB 10.9 hr / 15.0 GB 12.3 hr / 15.0 GB 15.4 hr / 15.0 GB 21.7 hr / 15.0 GB
150K chr15 – 24.4 hr / 24.1 GB 13.5 hr / 18.4 GB 15.2 hr / 18.3 GB 18.9 hr / 18.3 GB 26.6 hr / 18.3 GB
150K chr10 – 35.2 hr / 34.2 GB 21.0 hr / 27.6 GB 22.9 hr / 27.6 GB 28.6 hr / 27.7 GB 39.9 hr / 27.7 GB
150K chr5 – 41.3 hr / 40.5 GB 24.3 hr / 32.9 GB 27.6 hr / 32.9 GB 34.0 hr / 32.9 GB 48.5 hr / 33.0 GB
150K chr1 – 58.1 hr / 56.7 GB 34.0 hr / 45.8 GB 38.1 hr / 45.8 GB 46.9 hr / 45.8 GB 65.0 hr / 45.8 GB

(b) Mean switch error rate (s.e.m.)
SHAPEIT2 Eagle1 Eagle2

N chrom K=5K K=10K K=20K K=40K
5K chr20 1.73% (0.06%) 2.86% (0.09%) 1.57% (0.05%) 1.46% (0.05%) 1.45% (0.05%) 1.45% (0.05%)
5K chr15 1.66% (0.06%) 2.81% (0.09%) 1.58% (0.05%) 1.47% (0.05%) 1.49% (0.05%) 1.49% (0.05%)
5K chr10 1.33% (0.04%) 2.29% (0.07%) 1.32% (0.04%) 1.20% (0.04%) 1.20% (0.04%) 1.20% (0.04%)
5K chr5 1.21% (0.04%) 2.18% (0.07%) 1.25% (0.04%) 1.12% (0.04%) 1.11% (0.04%) 1.11% (0.04%)
5K chr1 1.31% (0.04%) 2.26% (0.06%) 1.31% (0.04%) 1.15% (0.03%) 1.16% (0.03%) 1.16% (0.03%)

15K chr20 1.05% (0.05%) 1.54% (0.06%) 1.14% (0.05%) 0.99% (0.05%) 0.88% (0.04%) 0.86% (0.04%)
15K chr15 1.04% (0.05%) 1.52% (0.07%) 1.14% (0.05%) 1.03% (0.04%) 0.89% (0.04%) 0.86% (0.04%)
15K chr10 0.82% (0.03%) 1.28% (0.05%) 0.95% (0.04%) 0.81% (0.03%) 0.75% (0.03%) 0.72% (0.03%)
15K chr5 0.79% (0.03%) 1.18% (0.05%) 0.91% (0.04%) 0.77% (0.03%) 0.68% (0.03%) 0.66% (0.03%)
15K chr1 0.81% (0.03%) 1.24% (0.04%) 0.98% (0.03%) 0.81% (0.03%) 0.71% (0.03%) 0.69% (0.03%)
50K chr20 0.53% (0.04%) 0.67% (0.05%) 0.70% (0.05%) 0.57% (0.04%) 0.51% (0.04%) 0.46% (0.03%)
50K chr15 0.57% (0.03%) 0.70% (0.04%) 0.72% (0.04%) 0.60% (0.03%) 0.53% (0.03%) 0.49% (0.03%)
50K chr10 0.47% (0.02%) 0.59% (0.03%) 0.60% (0.03%) 0.50% (0.03%) 0.44% (0.03%) 0.40% (0.03%)
50K chr5 – 0.53% (0.03%) 0.58% (0.03%) 0.49% (0.03%) 0.42% (0.02%) 0.37% (0.02%)
50K chr1 – 0.55% (0.03%) 0.67% (0.03%) 0.55% (0.03%) 0.47% (0.03%) 0.40% (0.02%)

150K chr20 – 0.32% (0.03%) 0.38% (0.03%) 0.33% (0.03%) 0.29% (0.03%) 0.27% (0.02%)
150K chr15 – 0.36% (0.03%) 0.46% (0.03%) 0.37% (0.03%) 0.34% (0.03%) 0.31% (0.03%)
150K chr10 – 0.32% (0.02%) 0.39% (0.03%) 0.34% (0.02%) 0.29% (0.02%) 0.26% (0.02%)
150K chr5 – 0.29% (0.02%) 0.40% (0.03%) 0.33% (0.02%) 0.28% (0.02%) 0.25% (0.02%)
150K chr1 – 0.29% (0.02%) 0.44% (0.03%) 0.36% (0.03%) 0.30% (0.02%) 0.27% (0.02%)

This table provides per-chromosome breakdowns of computational cost and phasing accuracy
plotted in Figure 5 along with benchmarks for additional parameter settings of Eagle2. See the
captions of Figure 5 and Supplementary Table 7 for benchmarking details.
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Supplementary Table 9. Accuracy of non-reference-based phasing in the GERA
sub-cohorts.

European chip African chip East Asian chip Latino chip
Method N=62,084 N=3,823 N=5,178 N=7,150
SHAPEIT2 K=100 – 2.85% (0.07%) 2.02% (0.11%) 2.23% (0.05%)
Eagle1 1.34% (0.05%) 4.07% (0.10%) 3.09% (0.16%) 2.76% (0.06%)
Eagle2 K=5K 1.36% (0.04%) 2.81% (0.06%) 2.07% (0.11%) 2.20% (0.04%)
Eagle2 K=10K 1.25% (0.04%) 2.52% (0.05%) 1.97% (0.11%) 2.08% (0.04%)
Eagle2 K=20K 1.18% (0.04%) 2.50% (0.04%) 1.98% (0.11%) 2.06% (0.04%)

We benchmarked Eagle2 and other available phasing methods on the four GERA sub-cohorts
(excluding all non-trio-parent samples from each trio family). For the European chip sub-cohort,
we analyzed a total of 161,232 markers on chromosomes 1, 5, 10, 15, and 20; for the other
sub-cohorts, we analyzed all 22 autosomes. Standard errors for the European-ancestry sub-cohort
are over 400 parent samples. Standard errors for the other three sub-cohorts are over 25 SNP
blocks. We did not benchmark SHAPEIT2 on the European-ancestry sub-cohort, as it would have
required more than two weeks of computation.
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Supplementary Table 10. Phasing performance on sequence data.

Mean switch error rate Total CPU time
Method chr1 chr10 chr20 Combined (s.e.m.) per sample
SHAPEIT2 0.99% 0.90% 0.98% 0.96% (0.03%) 60.5 min
Eagle2 --histFactor=1 0.84% 0.77% 0.83% 0.82% (0.02%) 3.6 min
Eagle2 --histFactor=2 0.82% 0.75% 0.81% 0.80% (0.02%) 4.0 min
Eagle2 --histFactor=4 0.82% 0.76% 0.80% 0.80% (0.02%) 4.2 min

We benchmarked Eagle2 and SHAPEIT2 on sequence data from two independent trios
(NA12877, NA12889, NA12890 and NA12878, NA12891, NA12892) belonging to the
17-member CEPH pedigree 1463. This data was part of the public 69-genome data set sequenced
at 51–89x coverage by Complete Genomics and assembled using CGA Tools v1.6 and Analysis
Pipeline v2.0.0 (ref. [37]). We phased chromosomes 1, 10, and 20 of the four trio parents using
the merged 1000 Genomes Phase 3 + UK10K haplotype reference panel (EGAD00001000776;
ref. [38]). After removing 3 individuals in the reference panel who belonged to the pedigree, the
panel contained 6,282 samples. As in our previous benchmarks, we assessed switch errors
according to gold standard trio phase, and we measured running time per sample not including
constant initialization time required to load the data.

We ran SHAPEIT2 with --window=0.5 as recommended for sequence data [29]. We ran Eagle2
with its history length parameter set to 100 target hets (the default for analyzing genotype array
data), and we also tested the effect of doubling or quadrupling the history length (thus considering
haplotype matches spanning up to 200 or 400 target hets; Supplementary Note Sec. 2.2.1). We
observed that Eagle2 achieved gains in accuracy and speed over SHAPEIT2 similar to the gains
we observed in our benchmarks on genotype array data. Surprisingly, increasing Eagle2’s history
parameter had little effect on accuracy in these benchmarks. One possible explanation of this
observation is that rare variants provide enough information about haplotype structure for there to
be little gain in using extended haplotype information. Another possibility is that genotyping
and/or phasing errors in the reference panel break up haplotypes at the length scale of 100 hets.
Further work will be required to investigate whether this behavior occurs in other sequence data
sets.
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Supplementary Table 11. Sensitivity of Eagle2 to recombination probability model.

(a) Mean switch error rate (s.e.m.)
Coalescent-based Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --expectIBDcM=0.5 0.90% (0.03%) 0.67% (0.02%) 0.55% (0.02%) 0.40% (0.02%)
Eagle2 --expectIBDcM=1 0.87% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.39% (0.02%)
Eagle2 --expectIBDcM=2 (default) 0.87% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.38% (0.02%)
Eagle2 --expectIBDcM=4 0.87% (0.03%) 0.65% (0.02%) 0.54% (0.02%) 0.39% (0.02%)

Li-Stephens Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --expectIBDcM=-0.5 0.88% (0.03%) 0.66% (0.02%) 0.54% (0.02%) 0.39% (0.02%)
Eagle2 --expectIBDcM=-1 0.87% (0.02%) 0.65% (0.02%) 0.53% (0.02%) 0.39% (0.02%)
Eagle2 --expectIBDcM=-2 0.87% (0.03%) 0.65% (0.02%) 0.54% (0.02%) 0.39% (0.02%)
Eagle2 --expectIBDcM=-4 0.89% (0.03%) 0.67% (0.02%) 0.55% (0.02%) 0.40% (0.02%)

(b) CPU time per target genome
Coalescent-based Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --expectIBDcM=0.5 1.7 min 1.7 min 1.7 min 1.8 min
Eagle2 --expectIBDcM=1 1.6 min 1.6 min 1.6 min 1.6 min
Eagle2 --expectIBDcM=2 (default) 1.6 min 1.6 min 1.6 min 1.6 min
Eagle2 --expectIBDcM=4 1.5 min 1.4 min 1.5 min 1.5 min

Li-Stephens Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --expectIBDcM=-0.5 2.1 min 2.1 min 2.0 min 2.1 min
Eagle2 --expectIBDcM=-1 1.9 min 1.9 min 1.9 min 1.9 min
Eagle2 --expectIBDcM=-2 1.8 min 1.8 min 1.8 min 1.8 min
Eagle2 --expectIBDcM=-4 1.7 min 1.7 min 1.7 min 1.7 min

We assessed the sensitivity of Eagle2 to its assumed recombination probability model
(Supplementary Note Sec. 4) in our reference-based phasing benchmarks using reference panels
generated from Nref = 15K–100K UK Biobank samples; see Supplementary Table 3 for details.
The --expectIBDcM parameter determines the recombination probability model: positive values
invoke the SMC model [34] in which the IBD segment length distribution falls off cubically with
segment length [35], while negative values invoke the Li-Stephens [21] exponential decay.

These results indicate that Eagle2’s performance is insensitive to both the form (coalescent-based
vs. Li-Stephens) and parameterization (expected IBD length) of the recombination probability
model across a large range of reference sample sizes. We note that the slight increase in running
time when using Li-Stephens probabilities is due to the cost of computing exponentials; this cost
could be reduced by using lookup tables.

39

Nature Genetics: doi:10.1038/ng.3679



Supplementary Table 12. Sensitivity of Eagle2 to its genotype error parameter.

(a) Mean switch error rate (s.e.m.)
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --genoErrProb=0.0003 0.86% (0.02%) 0.64% (0.02%) 0.53% (0.02%) 0.37% (0.02%)
Eagle2 --genoErrProb=0.001 0.86% (0.02%) 0.64% (0.02%) 0.53% (0.02%) 0.38% (0.02%)
Eagle2 --genoErrProb=0.003 (default) 0.87% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.38% (0.02%)
Eagle2 --genoErrProb=0.01 0.88% (0.03%) 0.67% (0.02%) 0.55% (0.02%) 0.41% (0.02%)
Eagle2 --genoErrProb=0.03 0.93% (0.03%) 0.71% (0.03%) 0.59% (0.03%) 0.44% (0.02%)

(b) CPU time per target genome
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --genoErrProb=0.0003 1.8 min 1.7 min 1.8 min 1.8 min
Eagle2 --genoErrProb=0.001 1.6 min 1.7 min 1.7 min 1.9 min
Eagle2 --genoErrProb=0.003 (default) 1.6 min 1.6 min 1.6 min 1.6 min
Eagle2 --genoErrProb=0.01 1.4 min 1.4 min 1.4 min 1.4 min
Eagle2 --genoErrProb=0.03 1.4 min 1.2 min 1.3 min 1.4 min

We assessed the sensitivity of Eagle2 to its genotype error parameter ε (Supplementary Note,
equation (6)) in our reference-based phasing benchmarks using reference panels generated from
Nref = 15K–100K UK Biobank samples; see Supplementary Table 3 for details. By default,
Eagle2 sets ε = 0.003.

These results indicate that Eagle2’s performance is insensitive to ε within the range ε =
0.0003–0.01. We note that the reason the running time increases with decreasing ε is that this
parameter also governs a threshold used to prune low-probability diplotypes (Supplementary Note
Sec. 2.3.2); smaller values of ε result in a more exhaustive search through diplotype space.
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Supplementary Table 13. Sensitivity of Eagle2 to its history length parameter.

(a) Mean switch error rate (s.e.m.)
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --histFactor=0.5 0.92% (0.02%) 0.70% (0.02%) 0.59% (0.02%) 0.43% (0.02%)
Eagle2 --histFactor=1 (default) 0.87% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.38% (0.02%)
Eagle2 --histFactor=2 0.87% (0.03%) 0.64% (0.02%) 0.53% (0.02%) 0.38% (0.02%)
Eagle2 --histFactor=4 0.88% (0.03%) 0.65% (0.02%) 0.53% (0.02%) 0.38% (0.02%)

(b) CPU time per target genome
Method Nref = 15K Nref = 30K Nref = 50K Nref = 100K
Eagle2 --histFactor=0.5 1.5 min 1.5 min 1.5 min 1.5 min
Eagle2 --histFactor=1 (default) 1.6 min 1.6 min 1.6 min 1.6 min
Eagle2 --histFactor=2 1.7 min 1.6 min 1.7 min 1.7 min
Eagle2 --histFactor=4 1.7 min 1.7 min 1.6 min 1.8 min

We assessed the sensitivity of Eagle2 to its history length parameter (Supplementary Note
Sec. 2.2.1) in our reference-based phasing benchmarks using reference panels generated from
Nref = 15K–100K UK Biobank samples; see Supplementary Table 3 for details. By default,
Eagle2 compares target genotypes to reference haplotypes across spans of up to 100 target hets
(--histFactor=1). The parameter settings --histFactor=0.5, 2, 4 change this
maximum span to 50, 200, or 400 target hets, respectively.

These results indicate that Eagle2’s performance is insensitive to increasing the history length
parameter beyond 1. We note that the reason the running time increases only slightly with history
length is that haplotype matches spanning hundreds of hets are rare. When no long matches exist,
increasing the history length does not result in any extra work.
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