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Materials and Methods 

UK Biobank genetic data.   
The UK Biobank resource contains extensive genetic and phenotypic data for ~500,000 
participants recruited from across the UK (45).  We analyzed SNP and indel genotypes available 
from blood-derived SNP-array genotyping of 805,426 variants in 488,377 participants and 
subsequent imputation to 93,095,623 autosomal variants (using the Haplotype Reference 
Consortium, UK10K, and 1000 Genomes Phase 3 reference panels) in a subset of 487,409 
participants (6).  We further analyzed exome-sequencing read alignments and genotype calls 
available from whole-exome sequencing (WES) of 49,960 participants (8) (which achieved >20x 
coverage by 76bp paired-end reads for an average of 94.6% of targeted sites).  We augmented 
the SNP-imputation data set with 4.9 million (predominantly rare) autosomal variants from the 
WES genotype call set that we previously imputed into the full cohort (10). 

Sample filters for ancestry and relatedness.   
We applied strict filters to avoid confounding from population stratification and relatedness 
among individuals in genetic association analyses.  We performed initial analyses on a 
stringently-filtered set of 337,466 unrelated, White British individuals identified by UKB (6) 
(based on self-report and analysis of genetic principal components (PCs)) who had not since 
withdrawn from the study.  In follow-up analyses of VNTRs exhibiting potentially causal 
phenotype associations, we expanded this sample set to a larger set of 415,280 participants that 
we identified using less-extreme filtering on ancestry and relatedness to maximize power to fine-
map associations.  Specifically, starting with the set of individuals who reported White ethnicity, 
we (i) removed PC outliers (more than six standard deviations away from the mean in any of the 
first 10 PCs); and (ii) removed one individual from each ≤2nd-degree related pair (kinship 
coefficient > 0.0884) previously identified by UKB (6), prioritizing retaining individuals for 
whom height measurements were available.  In secondary analyses of cross-population variation, 
we further analyzed smaller subsets of UKB participants who self-reported African, South Asian, 
or East Asian ancestry (comprising 1.6%, 1.9%, and 0.3% of the UKB cohort, respectively).  
Admixed Americans were insufficiently represented in the UKB cohort to include in analyses. 

UK Biobank phenotype data.   
We performed initial analyses on a set of 786 phenotypes (Table S2) that we curated from the 
UK Biobank “core” data set.  This set of phenotypes consisted of: (i) 636 diseases with >200 
reported cases among 337,466 unrelated, White British individuals (as of Oct 10, 2019) collated 
by UKB from several sources (self-report and accruing linked records from primary care, 
hospitalizations, and death registries) into single “first occurrence” data fields indexed by ICD-
10 diagnosis codes; and (ii) 150 continuous and categorical traits selected based on high 
heritability or common inclusion in genome-wide association studies.  Phenotypes in the latter 
set were derived from physical measurements and touchscreen interviews; blood count, lipid and 
biomarker panels of biological samples; and follow-up online questionnaires.  For continuous 
traits, we performed quality control and normalization (outlier removal, covariate adjustment, 
and inverse normal transformation) as previously described (10, 46). 
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Protein-coding VNTR ascertainment and genotyping pipeline.   
We identified and genotyped VNTR allele length variation from exome-sequencing data using an 
analysis pipeline consisting of three main steps (detailed in the Supplementary Text): 
 

1. Identify potential VNTR loci from repeat sequences in the human reference.  We 
identified approximate tandem repeats in the GRCh38 reference using two approaches: 
(i) Tandem Repeats Finder (47) v4.09 (using its suggested parameters 2 5 7 80 10 50 
2000 -l 6 -h to detect repeated patterns of up to 2kb); and (ii) a separate algorithm we 
developed to identify large, multi-kilobase repeats such as the KIV-2 VNTR in LPA 
(Supplementary Text).  We filtered to autosomal loci with a repeat unit at least 9bp long 
that overlapped at least one exon (of any transcript) and overlapped the set of WES 
targets. 
 

2. Estimate VNTR lengths from exome-sequencing depth-of-coverage.  At each potential 
VNTR, we estimated diploid VNTR content (i.e., the sum of VNTR allele lengths across 
an individual’s two alleles) for exome-sequenced UKB participants by counting aligned 
reads overlapping the VNTR.  To reduce technical noise in these measurements, we 
normalized depth-of-coverage estimates in each individual against corresponding 
estimates in the 200 other individuals in the cohort with closest-matching exome-wide 
sequencing profiles (Supplementary Text).  To gauge the precision of these estimates, we 
computed the correlation coefficient between estimates in pairs of “IBD2” siblings who 
shared both haplotypes identical-by-descent (i.e., had inherited the same allele from their 
mother and inherited the same allele from their father). 
 

3. Phase and impute VNTR allele length estimates by modeling haplotype sharing.  We 
performed statistical phasing on estimates of diploid VNTR content to estimate haploid 
allele lengths, which we then imputed from the exome-sequenced participants into the 
remainder of the UKB cohort.  To do so, we developed a computational algorithm to 
efficiently phase multiallelic VNTR variants (with real-valued length estimates) using 
surrounding SNP-haplotype information and simultaneously compute cross-validation-
based benchmarks of phasing and imputation accuracy (Supplementary Text). 

 
The first step of this pipeline (based solely on analysis of the human reference sequence) 
produced a list of 8,186 exon-overlapping tandem repeat sequences in the human genome.  
However, we expected that the large majority of these tandem repeats did not represent true 
protein-coding VNTRs (either because they did not exhibit allele length variation or because 
they did not overlap coding sequence due to imprecise endpoint-calling) or were too short to 
accurately genotype from sequencing depth-of-coverage data.  We therefore developed a 
stringent filtering pipeline to create a high-confidence subset of protein-coding VNTRs suitable 
for analysis, ensuring that estimated lengths of these VNTRs (based on WES depth-of-coverage) 
exhibited heritable variation that was not the result of being contained within a larger CNV 
(Supplementary Text).  These filters produced a final set of 118 high-confidence protein-coding 
VNTRs modifying 118 distinct genes (Table S1). 
 
We also considered applying other methods previously developed for genotyping VNTRs such 
as adVNTR (48) and ExpansionHunter (49).  However, we were unable to use adVNTR because 
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it requires sequencing reads to span a VNTR (which was particularly limiting here because the 
UK Biobank exome sequencing used 76bp reads).  While ExpansionHunter is capable of 
genotyping repeats longer than the read length, it was designed primarily for STR genotyping 
and has been reported to produce incorrect estimates for VNTRs due to an assumption that 
different repeat units are mostly identical in sequence (49). 
 
Beyond needing to overcome these specific limitations, we were also motivated to develop 
methods tailored to analysis of the UK Biobank exome sequencing data due to its unique 
property of containing an extremely large number (N≈50,000) of uniformly-processed exomes. 
We were able to leverage these properties to maximize VNTR genotyping accuracy by (i) 
normalizing read-depth by matching read-depth profiles against other samples, (ii) correcting 
exome capture biases, and (iii) refining genotypes via haplotype modeling (Supplementary Text). 
These features have not been implemented in existing software packages designed for more 
general-purpose VNTR genotyping. 

Genotyping paralogous sequence variation within VNTRs.   
We also sought to identify and genotype intra-allelic variation within repeat units—i.e., 
paralogous sequence variants (PSVs) —within the LPA and ACAN VNTRs, both to improve the 
accuracy of VNTR length estimates (Supplementary Text) and for downstream fine-mapping of 
the LPA locus for Lp(a).  To do so, we catalogued within-repeat variation observed in exome-
sequenced individuals and then adapted our genotyping, phasing, and imputation pipeline to 
analyze PSV copy number estimates derived from counting numbers of reference vs. alternate 
base calls at each such variant (Supplementary Text). 

Initial VNTR-phenotype association and fine-mapping analyses.   
We performed association tests between the 118 high-confidence coding VNTRs and 786 
phenotypes in the stringently-filtered subset of 337,466 unrelated White British participants 
identified by UKB.  We computed linear regression association statistics using BOLT-LMM (13) 
v2.3.5 including a standard set of covariates (20 PCs, assessment center, genotyping array, sex, 
age, and age squared), and found 185 VNTR-phenotype pairs that passed a significance 
threshold of P<5 x 10-8 (commonly used in genome-wide association studies, and slightly 
conservative here). 
 
To determine which of these VNTR-phenotype associations were likely to represent causal 
effects of VNTR allele length variation (vs. tagging of nearby causal SNPs), we first computed 
linear regression association statistics for all nearby SNPs and indels imputed by UKB (within 
500kb of the VNTR) as we had for the VNTR.  We then applied the Bayesian fine-mapping 
software FINEMAP (9) v1.3.1 (options --corr-config 0.999 --sss --n-causal-snps 5) to estimate 
the likelihood of causality for the VNTR, accounting for linkage disequilibrium with up to 2,000 
of the most strongly associated nearby variants.  The results of these analyses are summarized in 
Table S3. 

Follow-up analyses of potentially causal VNTR-phenotype associations using refined 
genotypes and phenotypes.   
For each of six distinct VNTRs involved in 20 VNTR-phenotype associations that were assigned 
a high probability of causality (>0.95), we further optimized estimates of VNTR allele lengths by 
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refining VNTR boundaries, carefully modeling biases in exome-sequencing read-capture induced 
by variation within repeat units, and (for the TENT5A VNTR) incorporating read-level 
information from single sequencing reads that spanned short alleles (Supplementary Text).  
These genotyping optimizations either increased or maintained the evidence for causality of all 
associations except one, between height and a VNTR in RRBP1, at which the posterior 
probability of causality dropped to 0.33 (Supplementary Text); we therefore dropped this 
association from further analysis, leaving nineteen VNTR-phenotype associations involving five 
VNTRs (LPA, ACAN, TENT5A, MUC1, and TCHH).  
 
For each of these five VNTRs, we further verified that its fine-mapping was robust to the choice 
of statistical fine-mapping software used for this analysis (given that modeling assumptions vary 
across fine-mapping software packages).  Specifically, for each top VNTR-phenotype 
association (Table 1), we reran fine-mapping using the Sum of Single Effects model (SuSiE) 
(50) and found that in each case, the VNTR was assigned a posterior inclusion probability (PIP) 
of 1.  We performed these analyses using susieR v0.10.1 (with default parameters, which 
allowed for L=10 causal variants), considering all variants (VNTR, SNPs, and indels) within 
250kb of the VNTR that were nominally associated with the phenotype (P<0.01).  We computed 
LD among these variants using LDstore (51). 
 
We curated three derived phenotypes for follow-up analyses based on relevance to the 
associations that fine-mapped to these VNTRs.  For serum lipoprotein(a), the phenotype coding 
provided by UKB had coded 17% of Lp(a) measurements as missing due to falling outside the 
reportable range (3.8-189 nmol/L).  To enable analysis of individuals with such measurements, 
we incorporated binary information available about whether Lp(a) had been below vs. above the 
reportable range by creating a “cropped Lp(a)” phenotype in which we assigned Lp(a) values of 
3.7 or 190 nmol/L to such individuals; we carefully modeled the effect of this cropping in 
subsequent association and fine-mapping analyses (Supplementary Text).  We also computed an 
estimated glomerular filtration rate (eGFR) phenotype (relevant to MUC1) from serum creatinine 
measurements using the MDRD study equation (52), and we computed a male pattern baldness 
score phenotype (relevant to TCHH) following previous work (53). 
 
We performed follow-up analyses using the optimized VNTR genotypes on an expanded set of 
415,280 PC-filtered, unrelated European-ancestry participants (described above) and further 
optimized statistical power (54) by performing linear mixed model association analysis of top 
phenotype associations using BOLT-LMM (reported in Table 1 and in the European-ancestry 
genome-wide association plots in Fig. 2A and Fig. 3A,C; for the African-ancestry genome-wide 
association analysis of height in Fig. 2A, we ran linear regression using our standard covariates).  
To emulate mixed model association power in analyses exploring the effects of specific VNTR 
alleles and SNPs at the ACAN and TENT5A loci for height (Fig. 2C-F), we performed analyses 
on height residualized for polygenic predictions of height from array-typed SNPs (omitting those 
within 2Mb of each VNTR) that we generated using BOLT-LMM (--predBetasFile) in 10-fold 
cross-validation (55). 

Logistic regression analyses of VNTR associations with disease outcomes.   
We performed logistic regression to further investigate associations between genetically 
predicted Lp(a) and myocardial infarction (I21) and type-2 diabetes (E11), between ACAN 
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VNTR length and intervertebral disk disorders (M51), and between MUC1 VNTR length and 13 
kidney diseases with at least 100 cases (I12, M10 = gout, N00, N02, N03, N04, N05, N11 = 
chronic tubulo-interstitial nephritis, N17, N18 = chronic kidney disease, N19, N25, and Q61, 
using the ICD-10 coded disease phenotypes collated by UKB).  For LPA and MUC1, we binned 
data by the variable of interest (genetically predicted Lp(a) or MUC1 VNTR length), included an 
indicator variable for each bin (omitting the reference bin; Lp(a) between 10-30 nmol/L in Fig. 
1D and MUC1 VNTR copy number <55 in Fig. 3D), and reported the effect size estimated for 
each bin.  For ACAN, we analyzed VNTR length as a quantitative variable.  We included age, 
age squared, and sex as covariates in these analyses.   

Estimating effects of VNTR alleles on quantitative traits.   
To estimate effect sizes of VNTR alleles or groups of alleles in analyses of quantitative traits, we 
binned alleles by VNTR length and SNP-haplotypes (when additional likely-causal SNPs had 
been identified), plotting the phenotypic mean among individuals carrying an allele in the bin 
(counting homozygous carriers twice) against the bin-wise median VNTR length (Figs. 1A, 
2D,F, 3B, and 4B,F).  In Fig. 1A, we extrapolated mean Lp(a) in bins containing a large fraction 
(>15%) of Lp(a) measurements that exceeded the reportable range (>189 nmol/L) and had been 
cropped.  We performed this extrapolation based on the median Lp(a) value in the and the 
assumption that Lp(a) within a bin was log-normally distributed with a 𝜎 = 0.304 (which 
appeared empirically to fit well across a broad cross-section of bins with fewer cropped values).  
In Fig. 2D (visualizing the effects of ACAN alleles on height), we rounded allele length estimates 
to the nearest integer and plotted integer bins with MAF>0.5% as well as extreme allele bins (for 
the rare 13- and 19-repeat alleles and very long alleles containing 40-42 repeats). 

Computing the genetic correlation between urea and urate. 
We used variance components analysis to estimate the genetic correlation between serum urea 
and urate in UK Biobank using the restricted maximum likelihood (REML) approach 
implemented in BOLT-REML (56).  We restricted analysis to 415,280 unrelated individuals of 
European ancestry and included the standard set of covariates used in our association analyses. 

Modeling lipoprotein(a) concentration from KIV-2 VNTR allele lengths and LPA sequence 
variants.   
Even though Lp(a) is almost completely determined by allelic variation at LPA, the specific LPA 
sequence variants that influence Lp(a) and the way that they interact to determine lipoprotein(a) 
concentration have remained elusive (12).  Part of the challenge of fine-mapping the LPA locus 
is the need for accurate genotyping of both KIV-2 length variation and SNP variation within the 
KIV-2 repeat (i.e., PSVs), which has not been available to previous large-scale studies.  A further 
challenge is the multiple forms of nonlinearity that complicate the relationship between LPA 
sequence variation and Lp(a): (i) the nonlinear relationship of KIV-2 length with Lp(a) (even 
controlling for other LPA sequence variants), and (ii) the nonlinearities induced by the allele-
specific nature of apo(a) production from individual LPA alleles (such that Lp(a)-modifying 
sequence variants on one chromosome exhibit effects that depend on the length of the KIV-2 
repeat on that chromosome, while having no effect on the apo(a) production of the LPA allele on 
the other (homologous) chromosome).  For these reasons, although well-powered fine-mapping 
studies that have applied standard stepwise conditional analyses adjusted for KIV-2 length have 
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identified dozens of conditionally independent SNP associations at LPA, these lists have mostly 
contained noncoding variants unlikely to have causal effects (57, 58). 
 
To fully leverage our comprehensive genotyping and imputation of phased KIV-2 allele lengths, 
PSVs in and near KIV-2 exons, and SNPs and indels at LPA in ~500,000 UKB participants—and 
to accurately model Lp(a) measurements that had been cropped to the range 3.8-189 nmol/L—
we developed novel statistical methods to fine-map the complex association pattern at LPA to 
causal SNPs, and then to perform predictive modeling of Lp(a) from genotypes of these SNPs 
together with KIV-2 repeat lengths.  Briefly, we first performed fine-mapping within an 
effective-haploid model of Lp(a) created by carriers of alleles producing little or no Lp(a).  This 
framework isolated contributions of individual LPA alleles, greatly elucidating the effects of 
variants that substantially reduced Lp(a) (Fig. S10).  Stepwise conditional analyses within this 
framework identified an allelic series including 18 protein-altering variants and 3 variants in the 
5’ UTR of LPA that each appeared likely to causally influence Lp(a) levels (based on achieving 
top or near-top association strengths in successive steps of analysis); 2 additional protein-
truncating variants within KIV-2 exons had effects mostly masked by linkage disequilibrium 
with a canonical splice site variant (59) (Table S4 and Supplementary Text).  Second, we created 
an intuitive model that accurately predicted Lp(a) as a sum of allelic contributions determined by 
KIV-2 length and the combination of alleles of the 23 likely-causal LPA SNP and indel variants 
carried on each haplotype.  This model consisted of a low-dimensional parametrization of the 
“baseline curve” relating KIV-2 length to Lp(a) (in the absence of other Lp(a)-modifying 
variants) on top of which SNP modifiers exerted multiplicative effects (Supplementary Text). 
 
We compared the above model of Lp(a) to two simpler models corresponding to standard 
analyses: a model predicting Lp(a) from KIV-2 length alone (used in Fig. 1B) and a linear model 
using KIV-2 length together with the 23 likely-causal LPA variants we identified from fine-
mapping.  To model Lp(a) from KIV-2 length alone, we first estimated contributions of KIV-2 
alleles to Lp(a) in a SNP-unaware manner: we binned alleles solely by KIV-2 length in 2-repeat-
unit windows, and we then averaged Lp(a) measurements for the alleles in each bin carried by 
individuals with a low-Lp(a) allele on the homologous chromosome (i.e., alleles plotted in Fig. 
1A).  As in the model above, we then predicted a given individual’s Lp(a) by summing the 
contribution of the two alleles (and cropping values outside the reportable range when 
performing comparisons against measured Lp(a)).  In the linear model, we modeled Lp(a) as a 
linear combination of diploid genotypes (for the 23 LPA SNP and indel variants) and diploid 
KIV-2 content, fitting this model using linear regression against measured Lp(a). 

Association analysis of medication use and liver diseases with altered Lp(a) levels.   
To investigate potential effects of exposures including medication use and liver disease on 
lipoprotein(a) levels, we tested these exposures for association with differences between 
observed and genetically-predicted Lp(a) in UK Biobank. These analyses were well-powered 
because genetically-predicted Lp(a) explained ~80% of Lp(a) variance in participants of 
European ancestry (including those not in the exome-sequenced cohort, for whom we imputed 
KIV-2 length and LPA variants), thus serving as a proxy for baseline Lp(a) (prior to the 
exposure). We computed the log ratio of observed vs. predicted Lp(a), adjusted for age, sex, and 
20 PCs, in 210,755 UK Biobank participants with predicted Lp(a) between 10-100 nmol/L (to 
avoid bias due to cropping of Lp(a) measurements to 3.8-189 nmol/L) in the unrelated, PC-
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filtered European-ancestry cohort. For the subsets of individuals who reported taking each of 
1,314 medications (taken by at least 10 individuals analyzed), we computed a z-test to determine 
whether or not medication use associated (at Bonferroni significance, P<4 x 10-5) with a change 
in the log-ratio of observed vs. predicted Lp(a); if so, we exponentiated this change (and its 95% 
CI) and subtracted 1 to obtain non-log-scale changes in Lp(a). We performed analogous analyses 
for liver diseases (K70-K77) with at least 100 cases and for type 2 diabetes for reference. We 
note that these association analyses do not prove causality, which appears plausible or has been 
reported for many of the associations but is less clear for others; e.g., both T2D medications and 
T2D status associate with similar reductions in Lp(a), leaving uncertain whether the associations 
are driven by medication use, T2D itself, or a T2D-related comorbidity (Table S5). 

Replication of the ACAN-height association in the AAAGC African-ancestry cohort.   
Encouraged by the strength of the association we observed between ACAN VNTR length and 
height in UKB participants of African ancestry, we sought to replicate this finding by imputing 
the VNTR’s association statistic into SNP association statistics from the African Ancestry 
Anthropometry Genetics Consortium (AAAGC; N=41,399) (27).  We employed the approach of 
ImpG (60), which estimates a variant’s association statistic based on the association statistics of 
variants in LD (using a multivariate normal with covariance derived from the LD matrix).  To 
better match the LD structure reflected in the AAAGC analysis (which had performed 
imputation using LD from AFR samples from the 1000 Genomes Project (61)), we estimated LD 
among the ACAN VNTR and nearby SNPs in N=661 AFR samples from 1000 Genomes Phase 3 
(62) (after first imputing ACAN VNTR lengths from the UKB exome-sequencing cohort into 
1000 Genomes samples; Supplementary Text).  To ensure the SNPs used for imputation matched 
between the reference (1000 Genomes) and target (AAAGC) data sets, we restricted analysis to a 
subset of 4,026 SNPs within a 1Mb window centered at ACAN (chr15:88.9-89.9Mb) obtained by: 
restricting to SNPs present in both reference and target; removing rare SNPs (MAF<0.01 in 
AFR); removing palindromic SNPs (i.e., “A / T” and “G / C”); removing indels and multi-allelic 
sites; requiring allele frequencies to approximately agree in the reference and target (within 0.1); 
and requiring non-missing sample size (per SNP) >40,000 in the AAAGC meta-analysis.  Since 
the published implementation of ImpG requires variants to be bi-allelic, we re-implemented the 
method (using the same default regularization parameter L=0.1) to apply it to continuous-valued 
VNTR allele length estimates.  We validated our implementation by verifying that it produced 
identical results on bi-allelic variants (e.g., the 6-repeat VNTR allele). 
 
Consistent with our observations in UKB, the imputed association statistic for the VNTR was 
larger than that of any nearby SNP or indel (imputed P=5.8 x 10-40 for the VNTR vs. P=3.4 x 10-
14 for to the top SNP at the ACAN locus; Fig. S16), and was also stronger than the strongest 
reported SNP association genome-wide (P=3.3 x 10-20).  The 6-repeat allele also strongly 
associated with height (imputed P=5.0 x 10-15), and its best tag SNP analyzed in AAAGC 
associated with a large decrease in height (rs142149658, R2=0.44 with the 6-repeat allele, beta=-
0.34 s.d.).  These results were robust to the choice of SNPs used in imputation; e.g., restricting to 
137 SNPs based on LD with the VNTR (R2>0.05) produced a similar imputed association 
statistic for the VNTR (imputed P=1.6 x 10-29). 
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Association analysis of TCHH VNTR length variation with hair curl in TwinsUK.   
To explore the potential association of the TCHH 18bp (6 amino acid) repeat with hair curl 
(which was not phenotyped in UK Biobank), we analyzed 3,334 TwinsUK participants for whom 
both SNP-array genotypes and hair curl phenotypes were available and who did not report non-
White ancestry. Hair curl phenotypes on a 4-point scale had previously been collected from two 
questionnaires (Q18_10, available for 3,015 of the 3,334 individuals we analyzed, and Q19_36, 
available for 1,689 of the individuals we analyzed). We normalized each hair curl phenotype 
separately in males and females by regressing out age, mean-centering, and dividing by the 
standard deviation; for individuals with both hair curl phenotypes available, we then averaged 
the two normalized phenotypes. 
 
SNP-array genotyping had previously been performed using either an Illumina 610K or 317K 
array, which had low overlap with the Affymetrix arrays used by UK Biobank. To enable 
imputation of the TCHH VNTR from our reference panel of UK Biobank exome-sequenced 
participants, we first imputed SNPs in the region of chromosome 1 surrounding TCHH 
(chr1:140-165Mb) using the TOPMed imputation server (r2; 97,256 samples) (63, 64). (Prior to 
imputation, we excluded a small fraction of A/T or C/G SNPs to avoid potential strand-flipping.) 
After imputation, we improved the phasing of the TOPMed-imputed TwinsUK haplotypes at UK 
Biobank-typed SNPs by setting imputed genotypes that were <95% confident (i.e., 
0.05<HDS<0.95 for either haploid dosage) to missing and then rephasing non-missing SNP 
genotypes using Eagle (65) v2.4.1 --Kpbwt=100000, using all UK Biobank phased haplotypes 
(66) as a reference panel. We then imputed TCHH VNTR allele lengths into these rephased SNP-
haplotypes using the exome-sequenced UKB participants as a reference panel as in our other 
analyses (Supplementary Text), with only the slight change of ignoring genotypes that had been 
set to missing when computing identity-by-state (IBS) sharing between reference and target 
haplotypes. 
 
We performed linear mixed model association tests between the normalized, merged hair curl 
phenotype and the TCHH VNTR, imputed SNPs, and array-typed SNPs (with missingness <0.1) 
using BOLT-LMM with genotyping array as a covariate. Mixed model association analysis was 
necessary to account for substantial relatedness among TwinsUK participants (~1,000 
monozygotic or dizygotic twin pairs among the 3,334 individuals we analyzed).  
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Supplementary Text 

1  Identifying protein-coding variable number tandem repeats 
 
The analysis pipeline we used to identify protein-coding VNTRs (outlined in Materials and 
Methods) consisted of (i) scanning the GRCh38 reference genome for exon-overlapping repeat 
sequences; (ii) identifying the subset of such regions that appeared to exhibit heritable length 
variation (as estimated by exome sequencing read-depth); and (iii) applying a series of filters to 
reach a final, high-confidence set of VNTRs likely to affect protein length. The primary repeat 
ascertainment pipeline we used for (i) (based on Tandem Repeats Finder (47)) is described in 
Materials and Methods, as is the read-depth-based length estimation procedure we used for (ii). 
In this note we describe an additional method we developed to identify larger VNTRs 
(augmenting results from Tandem Repeats Finder) in (i), and we detail the filtering procedure we 
used for (iii). 

Scanning the genome for longer repeat regions 

To find larger and more highly-diverged candidate VNTR loci than those identified by Tandem 
Repeats Finder, we developed an additional, more permissive method to scan the reference 
genome for repeat regions that were likely to be enriched for polymorphic VNTR loci. This 
approach was motivated by our observation that known polymorphic VNTRs often correspond to 
sequences in the reference genome that are in tandem repeated segments but sometimes with 
high divergence. The method is comprised of two components: “VNTR Scanner” and “VNTR 
Partitioner.” 

VNTR Scanner. 

Step 1: Alignment scanning 

Given the reference genome (GRCh38) and a fixed kmer size (k=30) and maximum genomic 
distance (maxDistance=1Mb), we find all kmer alignments based on the following criteria. 

A kmer alignment is a list of L kmers where: 

a) each of the L kmers occurs in the reference genome T times (exact matches) 
b) all of the T alignments for this kmer occur within the same genomic window with 

maximum size maxDistance 
c) the alignments of each kmer in the list correspond to consecutive positions along the 

genome in each of the T occurrences and 
d) T >= minAlignments (=3) and T <= maxAlignments (=1000) 

To make such scanning efficient, we utilized a pre-computed index of the reference genome 
based on the Burrows-Wheeler Transform as implemented in the bwa aligner (67). 

Step 2: Alignment grouping 
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Given the set of kmer alignments from step 1, we compute a set of (often larger) genome 
segments that are enriched for containing such kmer alignments to evaluate as candidate VNTRs. 

For each kmer alignment, we define the encompassing interval as the maximum extent of the 
union of the kmer alignment locations. Each base within the encompassing interval is either 
aligned (i.e. lies within an aligned kmer) or not. Each candidate segment S is defined by a set of 
kmer alignments and the encompassing interval of S is the union of the encompassing intervals 
of the kmer alignments. We define the (alignment) density of a segment S as the number of 
aligned positions in the kmer alignments of S divided by the length of the encompassing interval 
of S. 

To group alignments into segments, we first form an initial set of candidate segments by merging 
together all kmer alignments whose encompassing intervals transitively overlap. Given a density 
threshold minDensity (=0.75), we recursively subdivide each candidate segment S until the 
density of S is at or above minDensity. Subdividing a segment is performed by finding the 
largest gap (largest contiguous run of non-aligned positions) within the encompassing interval of 
S, splitting the kmer alignments of S into two subsets that are (fully) on the left or right of the 
gap, and then regrouping the kmer alignments in each subset into smaller candidate segments 
(again by transitive overlap of encompassing intervals). 

VNTR Partitioner. 

Given a genomic segment (e.g. from VNTR Scanner), VNTR Partitioner uses heuristic methods 
to analyze the segment for repeating VNTR-like self-alignments. The partitioner estimates an 
approximate "period" of the repetitive structure of the segment (i.e. the length of the repeating 
unit), then estimates a set of breaks at which to partition the input segment based on the period 
and finally creates a multiple sequence alignment of these subsegments of the original segment, 
from which we derive the consensus repeat unit and final period estimate. (We used these 
estimates only to perform initial filtering on candidate VNTRs and later re-examined VNTR 
repeat units and periods manually for VNTRs of particular interest; as such, we only briefly 
outline the main ideas of this method below.) 

The partitioner uses multiple strategies to estimate the period of the segment. 

The first is an approach similar to the VNTR Scanner. Given a kmer size (k=30) a set of kmer 
alignments are computed within the input segment. Each base position in the segment is assigned 
the period of the kmer alignment containing the base and the estimated period is the mode of the 
period distribution across all bases in the segment. 

The second strategy aligns the input segment against a linearly-shifted copy of itself scoring each 
position as either +1 for a match or -1 for a mismatch. The shift may be up to 75% of the length 
of the segment, although shifts above 50% of the length of the segment are penalized by a score 
of -0.5 for each base over 50%. The estimated period is the smallest shift that maximizes this 
alignment score. 

The third strategy takes the estimated period from method 1 or method 2 (whichever is larger, 
but capped at 200bp) and extracts a "query" sequence of this length from the start of the input 
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segment. This query sequence is then aligned to the input segment in sliding target windows 
using the Smith-Waterman-Gotoh algorithm (with parameters match=2, mismatch=1, open=2.5, 
extend=0.5). Each target window is padded on the left and the right by 30% of the estimated 
period or 20bp, whichever is less. For each target window, the best SW alignment and alignment 
score is obtained as well as the predicted start of this query sequence alignment within the full 
input segment. Consecutive target windows will often have the same start position for the 
alignment and often the same alignment score. 

Alignment start positions are then computed that represent local maxima in the vector of the 
alignment scores from each target window. Several heuristics are used to reduce noise in the 
estimation of the local maxima: Local maxima are computed over a small window with width 
equal to 20bp or the estimated period, whichever is less. To be selected as a local maximum, the 
alignment score for this position must be within a certain fraction (50%) of the global maximum 
alignment score. If potential local maxima have equal alignment scores, the alignment position 
corresponding to the largest number of target windows is used. Local maxima must be at least 
3bp apart. 

After the local maxima are determined, they are used to re-estimate the period (by taking the 
mode) and the sliding window alignment procedure is iterated one additional time with the 
updated period estimate. 

Finally, a multiple-sequence alignment is constructed by extracting segments bounded by the 
local maxima of the sliding window alignments and aligning them using MUSCLE (68) v3.8.425 
with default parameters. From the MUSCLE alignment, a consensus repeat sequence is 
calculated based on the most common value in each column of the alignment and a final period 
estimate is determined based on the length of the consensus repeat sequence. 

Filtering candidate VNTR loci to a high-confidence set of protein-coding VNTRs 

Our analyses of the GRCh38 reference sequence identified 8,186 potential autosomal, exon-
overlapping VNTRs (8,048 from Tandem Repeats Finder and 138 from the method above) that 
also overlapped the exome-capture targets used by UK Biobank. However, we expected that the 
large majority of these tandem repeats did not represent true protein-coding VNTRs (either 
because they did not vary in length in the population or because they did not overlap coding 
sequence due to imprecise endpoint-calling) or were too short to accurately genotype from 
sequencing depth-of-coverage data. We therefore developed a stringent filtering pipeline to 
create a high-confidence subset of protein-coding VNTRs for downstream analysis, ensuring that 
estimated lengths of these VNTRs (based on WES depth-of-coverage) exhibited heritable 
variation that was not the result of being contained within a larger CNV. This filtering pipeline 
proceeded in two steps. 

Step 1: Initial filters. 

• Removed regions with short repeat units (<9bp). 

• Removed regions with fewer than 3 repeat units in the GRCh38 reference. 
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• Removed regions that did not appear to exhibit heritable length variation (as estimated by 
exome-sequencing depth-of-coverage), i.e., IBD2 sibling correlation (IBD2	𝑅) < 0.25 or 
estimated imputation accuracy 𝑅!- < 0.25 (see Supplementary Text 3 for detailed 
definitions of these quantities). 

• Removed duplicated regions, choosing randomly among pairs of regions whose 
endpoints were within 100bp of one another. 

• Removed regions whose flanking sequences had paralogs elsewhere in the genome 
(indicating potential containment in a larger CNV). To identify matches, we ran BLAT 
(69) v35 on the 500bp sequence 50bp upstream and downstream of the putative VNTR, 
filtering it if a >97%-identity match was found for either flanking sequence. 

• Removed regions that were not contained within a single gene transcript. 

These initial filters produced a list of 254 exon-overlapping potential VNTR regions in 190 
genes (where the number of regions exceeded the number of unique genes because some VNTR 
regions were still represented by multiple repeat sequence calls with different boundaries). 

Step 2: Stringent filters. 

• Required regions to either contain at least three entire exons, or be spanned by a single 
exon (of any transcript, allowing the region’s end points to move by up to 5bp to satisfy 
this requirement). 

• Eliminated pairs of non-overlapping regions whose length estimates (imputed into the 
full UKB cohort) were correlated (R2>0.5) (indicating potential containment in a larger 
CNV). 

• Eliminated regions whose depth-of-coverage length estimates in 30x-coverage WGS data 
(on 3,202 samples from the 1000 Genomes Project (70)) were correlated with depth-of-
coverage on either flanking region (R>0.4), indicating potential containment in a larger 
CNV. Depth of coverage was measured within the putative VNTR region and in 1kb 
flanking segments starting 100bp outside of the VNTR region using Genome STRiP (71) 
with default parameters but removing the default genome mask that masks out non-
unique portions of the reference genome. 

• Eliminated regions for which an overlapping region with correlated length estimates 
(R2>0.5) appeared to produce higher-quality read-depth-based length estimates (higher 
IBD2 sibling correlation). 

• Eliminated regions entirely contained within another region. 

• Eliminated regions that did not overlap canonical coding DNA sequence (CCDS from the 
UCSC hg38 downloads database). 

These stringent filters eliminated roughly half of the 254 potential coding VNTRs that passed our 
initial filters. We then manually reviewed the excluded VNTRs, adding back in a few VNTRs 
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that appeared to have been over-conservatively filtered (based on known VNTR variation at 
these loci from previous literature or examination of VNTR sequence together with transcript 
annotations on the UCSC Genome Browser (72)). We also manually reviewed VNTRs that 
passed the above filters but had estimated period lengths that were not multiples of 3, in most 
cases determining that the VNTR either fully spanned one or more exons or that its period had 
been incorrectly estimated; in other cases, we excluded the VNTR. Finally, we manually 
examined two remaining instances in which multiple VNTR regions were called in the same 
gene, selecting a representative VNTR in each case. These final filters produced our main 
analysis set containing 118 high-confidence protein-coding VNTRs (in 118 distinct genes). 
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2  Estimating diploid VNTR content from exome sequencing read depth 
 
Depth-of-coverage is commonly used to identify copy-number variation from short-read 
sequencing (73, 74) and has more recently been used to estimate VNTR allele lengths (combined 
across maternally- and paternally-inherited haplotypes) from whole-genome sequencing data (71, 
75, 76). Here we applied this framework to estimate VNTR lengths from 76bp paired-end 
exome-sequencing reads (aligned to the GRCh38 reference using SPB pipeline used to process 
the 49,959-sample UK Biobank exome sequencing release (8)). For each repeat region 
ascertained in the GRCh38 reference that passed our filters for analysis (Materials and Methods), 
we began by counting, for each sample, the number of unique reads with a SAM flag (77) of 
0x53, 0x63, 0x93, 0xA3, 0x51, 0x61, 0x91, or 0xA1 that aligned to the region (allowing reads 
with any mapping quality including zero). We considered two possible definitions of “aligning to 
the region”: (i) having at least one mapped base fall within the region, or (ii) having all mapped 
bases fall within the region, choosing whichever approach produced higher IBD2 sib-pair 
correlation in a pilot analysis. 

Counts of reads generated from polymorphic repeat regions are expected to scale linearly with 
total (maternal plus paternal) repeat length and with sequencing coverage, such that naively, 
dividing read counts by overall sequencing coverage (per-sample) produces estimates of “diploid 
VNTR content” (up to a suitable affine transformation). However, read counts can be strongly 
influenced by technical biases that vary across samples and typically contribute much more 
variance than Poisson noise. To mitigate this problem, computational methods that estimate 
depth-of-coverage usually model and correct for the effects of genomic features such as GC 
content that tend to influence technical biases (73, 74). 

Normalizing read depth against samples with similar exome-wide coverage profiles 

We developed a different normalization approach that leveraged the very large number of exome 
sequences (49,959) available for analysis: instead of explicitly identifying features that correlated 
with biases in sequencing depth, we identified samples that exhibited similar exome-wide 
coverage profiles, and we normalized VNTR-aligned read counts from each sample against 
corresponding read counts from the 300 samples with most similar coverage profiles (after 
adjusting all samples for overall coverage). The intuition behind this approach was that in the 
majority of the genome that does not vary in copy number between two individuals, depth-of-
coverage is influenced primarily by technical biases, such that the coverage profile of each 
sample provides a “barcode” that identifies which other samples were influenced by the same 
technical biases (e.g., due to sharing the same batch effects). 

The main challenge in effectively implementing this approach is deciding which genomic 
regions to include in the profiles. We found that restricting to "batch-informative regions" in 
which read depth was especially variable among samples was helpful. Understanding the 
properties of outlier regions in each stage of the analysis was also important: on one hand, we 
needed to prevent outliers from overly influencing the results; on the other hand, outliers could 
contain useful information about patterns of technical artifacts. 
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In detail, our normalization pipeline proceeded as follows: 

• Compute read depth in 1kb windows of the genome (using mosdepth (78) v0.2.5). 

• Restrict to regions with ~15-70x mean read depth across samples (81,564 1kb regions). 

• Exclude 1kb regions overlapping repeat regions identified by an initial run of our VNTR 
scanner (77,003 1kb regions left). 

• Normalize each sample to the same mean read depth across remaining 1kb regions. 

• Normalize each region: 
-- subtract mean across individuals 
-- divide by sqrt(mean across individuals) (proportional to Poisson standard deviation). 

• Rescale all normalized read depths so that median region has std dev = 1. 

• Restrict to regions with top-10% variance (the intuition being that most regions just have 
variation due to random noise, but a small subset are informative of batch effects). 

• Crop normalized read depths to (-2, 2) to reduce the effect of outliers. 

• Compute pairwise distances among 49,959 samples (where distance is defined as the sum 
of squared differences of final transformed read depths at remaining 1kb regions). 

• For each VNTR, normalize (aligned read count / exome-wide depth) in each sample by 
dividing this value by the mean (aligned read count / exome-wide depth) across the 300 
other samples with closest-matching read-depth profiles. 

We estimated (based on benchmarks assessing correlation of VNTR length estimates across 
IBD2 sib-pairs) that this normalization procedure tended to reduce noise variance by slightly 
more than half compared to naïve estimates (aligned read count / exome-wide depth) that did not 
make any attempt to correct for technical biases. 

We implemented a few refinements of this pipeline for our final analyses of the five VNTRs that 
appeared to drive strong phenotypic associations. First, instead of normalizing each sample 
against 300 closest-matching samples chosen from all 49,958 other samples, we normalized 
against 200 closets-matching samples chosen from the subset of other samples who reported 
European ancestry (to prevent ancestry bias among the set of “reference samples” chosen for 
normalization). Second, for the LPA and ACAN VNTRs, we leveraged variation within these 
VNTRs to separately estimate length variation of specific subtypes of repeats (by filtering to 
reads distinguishing the subtypes). Third, we rescaled allele length estimates (which the above 
pipeline normalizes to a mean of ~1 across all diploid estimates) to absolute numbers of repeats 
per allele (by comparison to literature and/or identification of discrete peaks in phased allele 
distributions). These latter two refinements are detailed for each VNTR (Supplementary Text 4).  
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3  Phasing and imputing VNTR lengths using surrounding SNPs 
 
Our read-depth-based VNTR length estimates (“diploid VNTR content”) for 49,959 exome-
sequenced UK Biobank participants enabled haplotype-sharing analyses to phase (and 
simultaneously refine) VNTR length estimates within the exome-sequenced cohort and to impute 
allele lengths into the remainder of the UK Biobank cohort. Haplotype-based phasing and 
imputation methods have consistently been shown to be reliable for modeling alleles carried by 
at least 5-10 samples in a cohort (63, 79). Consequently, in a ~50,000-sample cohort, this 
approach is expected to work well for alleles with frequencies as low as ~0.01% (and thus even 
for VNTRs with relatively high mutation rates). 

We employed an iterative algorithm in which haploid allele lengths of each individual in turn 
were updated according to a probabilistic haplotype-copying model using all other haplotypes as 
a reference panel, prioritizing copying from haplotypes closely matching the individual’s SNP-
haplotypes. This overall structure is similar in spirit to the approach applied by PHASE v2 (80) 
and many subsequent algorithms developed to phase biallelic SNPs; however, we adapted the 
approach in several ways to better suit the task of phasing a single multiallelic VNTR variant 
(with real-valued length estimates) in a very large cohort for which accurately-phased haplotypes 
of surrounding SNPs had previously been generated (66). (We performed phasing analyses on 
the subset of 49,796 exome-sequenced individuals with phased SNP-array haplotypes.) 

We note that while the Beagle software (81) can perform phasing of multi-allelic variants, it 
requires genotypes to be modeled as discrete alleles (either in the form of hard-called genotypes 
(GTs) or genotype likelihoods (GLs)); here, we wished to phase and impute continuous-valued 
VNTR allele length estimates, which cannot be converted to GLs without making assumptions 
about allele frequencies. As a result, we were unable to use Beagle to phase our VNTR length 
estimates. 

Haplotype-copying model based on identity-by-state (IBS) sharing 

Most of the commonly-used statistical phasing algorithms that have been developed to date have 
aimed to phase many SNPs across a locus or a chromosome. In this setting, hidden Markov 
model (HMM)-based approaches that model haplotypes as mosaics of sub-haplotypes copied 
(imperfectly) from a reference panel of other haplotypes (e.g., according to the Li-Stephens 
model (82)) have been a natural and very effective approach, as HMMs facilitate efficient 
computation of posterior probabilities across many SNPs via dynamic programming algorithms. 

Here, we faced a very different phasing task: at a typical locus, we only needed to phase a single 
VNTR and could assume that SNP-haplotypes had already been phased to chromosome-scale 
accuracy (66). As such, while a standard Li-Stephens HMM would produce a reasonable 
haplotype-copying model that could be used within a phasing routine, the HMM framework was 
unnecessary here, and a much simpler haplotype-copying model based on lengths of identity-by-
state (IBS) sharing could produce equivalent results with less computation. Moreover, the IBS-
based approach facilitated rapid tuning of the parameters of the haplotype-copying model, 
ultimately enabling improved phasing accuracy. 
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The typical length of a genomic segment shared identical-by-descent (IBD) between two 
haplotypes scales inversely with the time to the most recent common ancestor (TMRCA) 
because the TMRCA determines the number of opportunities for recombination in the coalescent 
tree connecting the haplotypes. In general, IBD segments are not expected to be identical-by-
state (IBS)—i.e., carry exactly the same alleles for all SNPs within—due to gene conversion, 
recent mutation, and genotyping and phasing error. Conversely, IBS-sharing may extend beyond 
the ends of IBD segments due to sharing of common haplotypes. However, when considering 
only IBS across accurately-genotyped, accurately-phased SNPs from a modern SNP-array 
platform (which is unlikely to “notice” most gene conversions or recent mutations), the 
biological and technical complexities that break up IBS-sharing within an IBD segment tend to 
be quite rare (i.e., occur only once every few megabases), and portions of longer IBS segments 
not too near their ends tend to consistently represent true IBD. 

We therefore quantified lengths of haplotype-sharing (in genetic map coordinates, i.e., 
centimorgans) with an IBS-like measure designed to be more robust to these complexities: 

ℓ!"# = 𝑎 ⋅ %IBS	length	in	direction	(left/right)9 + (1 − 𝑎) ⋅ (IBS	length	in	direction, allowing	1	error)	
ℓ = 𝑏 ⋅ %ℓ$%&' +	ℓ#"()'9 + (1 − 𝑏) ⋅ min%ℓ$%&', ℓ#"()'9. 

We set 𝑎 = 0.5 and 𝑏 = 0.25 based on empirical performance in phasing benchmarks (which 
tended to be insensitive to the choice of these parameters) and found that IBS-like lengths 
defined in this way served as a reasonable proxy for IBD lengths for the purpose of identifying 
haplotypes likely to share a recent common ancestor (and carry the same allele of a VNTR). 

We then defined a haplotype-copying model in which the probability of a given haplotype 
having been copied from each of a set of reference haplotypes scaled roughly with: 

exp	(−ℓ"/ℓ) 

where ℓ" denotes a constant factor (to be tuned from the data) and ℓ denotes the IBS-like length 
computed above. For computational convenience, we restricted the set of potential reference 
haplotypes to the top 𝐾#$% haplotypes with longest ℓ, and to add more flexibility to the functional 
form of the relationship between haplotype-sharing length and copying probability, we adjusted 
copying probabilities by including a regularization probability 𝑝&'( of randomly sampling from 
the top 𝐾#$% longest-matching reference haplotypes independent of ℓ. Together, these features 
produced copying probabilities: 

𝑃(copy	from	ref. hap. 𝑖) =
exp F−ℓ"ℓ)

G

∑ exp F− ℓ"ℓ*
G*	,-	.!"#

⋅ J1 − 𝑝&'(L 	+	
𝑝&'(
𝐾#$%

 

We tuned the parameters ℓ", 𝐾#$%, and 𝑝&'( independently for each VNTR as described at the 
end of this section. 

This haplotype-copying model immediately provided a means to impute VNTR allele lengths 
from a phased panel of reference SNP+VNTR length haplotypes into a target SNP haplotype (as 
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the weighted average of copied haplotypes, weighting according to the above probabilities) and 
provided a probabilistic framework within which to perform phasing. 

Model for estimated diploid VNTR content 

Assuming an individual’s two haplotypes (carrying VNTR alleles of length 𝑥/ and 𝑥!) had been 
copied from reference haplotypes 𝑖 and 𝑗 with (phased) VNTR allele lengths 𝑥) and 𝑥0, we 
modeled the observed “diploid VNTR content” estimate obtained from read-depth as being 
generated under the following model: 

𝑥/ =	𝑥) + 𝜖12#
(/) ,				𝑥! =	𝑥0 + 𝜖12#

(!)  

diploid	VNTR	estimate = 𝑥/ + 𝑥! + 𝜖'&& = F𝑥) + 𝜖12#
(/) G + F𝑥0 + 𝜖12#

(!) G + 𝜖'&& 

where each 𝜖12#	~	𝑁(0, 𝜎12#! ) roughly models “mutation” along the branch of the coalescent 
tree connecting the individual’s haplotype and the copied reference haplotype (but also 
incorporates potential error in the reference haplotype’s VNTR length) and 𝜖'&&	~	𝑁(0, 𝜎'&&! ) 
models noise in our read-depth-based estimate of diploid VNTR content. We also tuned 𝜎12# 
and 𝜎'&& independently for each VNTR. 

Iterative update of haploid allele length estimates 

Within this probabilistic framework, we performed phasing by iteratively leaving out each 
individual in turn and updating the left-out-individual’s (phased) VNTR allele lengths to their 
posterior means (assuming each of the individual’s two haplotypes had been “copied with noise” 
under the above model from a reference panel containing all other individuals’ haplotypes). 
Explicitly, the posterior probability of copying the individual’s haplotype 1 from reference 
haplotype 𝑖 and copying haplotype 2 from reference haplotype 𝑗 satisfies: 

𝑃(hap1	copied	from	ref. hap. 𝑖, hap2	copied	from	ref. hap. 𝑗	|	diploid	VNTR	estimate = 𝑥/5!̂)	

∝ 𝑃(SNP	hap1	from	ref. hap. 𝑖) ⋅ 𝑃(SNP	hap2	from	ref. hap. 𝑗) ⋅ expb−
J𝑥/5!̂ − 𝑥) − 𝑥0L

!

2 ⋅ (2𝜎12#! + 𝜎'&&! )c 

which provides weights from which the posterior mean can be computed as the weighted sum of 
posterior means assuming each copying configuration (using the formula for the conditional 
expectation of a bivariate Gaussian): 

𝐸[𝑥/	|	hap1	from	ref. hap. 𝑖, hap2	from	ref. hap. 𝑗, diploid	VNTR	estimate = 𝑥/5!̂]	

= 𝑥) +
𝜎12#!

(2𝜎12#! + 𝜎'&&! ) ⋅ J𝑥/5!̂ − 𝑥) − 𝑥0L	 

and likewise for the posterior mean of 𝑥!. 

We slightly modified the above computation to disallow copying both haplotypes from the same 
individual; this safeguard is commonly implemented in SNP-phasing methods to prevent circular 
updates in which two individuals who share both haplotypes IBD iteratively copy each other’s 
phased allele estimates, impeding progress. We implemented this modification by zeroing out 
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probabilities of copying from reference haplotypes 𝑖 and 𝑗 in the same reference individual (and 
renormalizing probabilities). 

Continuous (real-valued) versus discrete allele length estimates 

Our probabilistic framework modeled VNTR allele lengths as real-valued quantities rather than 
integer-valued copy numbers. This framework was sensible for modeling read-depth-based 
(continuous) estimates of diploid VNTR content and enabled efficient computation of posterior 
probabilities using Gaussian conditional expectations. In downstream analyses (e.g., association 
tests), we continued to analyze the real-valued VNTR allele lengths produced by our phasing and 
imputation pipeline, as these “dosage”-type estimates appropriately reflect uncertainty in allele 
lengths, maximizing power in regression analyses. However, to improve clarity of presentation, 
we displayed allele histograms using discrete bins in our main figures (equivalent to rounding 
allele lengths to the nearest integer). 

Benchmarking of phasing and imputation accuracy 

To benchmark the accuracy of phased VNTR length estimates, we adapted a trio-based approach 
commonly used for SNP-phasing benchmarks. The basic idea behind this benchmark is that if a 
cohort contains several complete trios (i.e., father, mother, and child), then phasing the cohort 
excluding all trio children will produce allele length estimates for all parental haplotypes 
(without using any information from within-family haplotype-sharing). Each child’s diploid 
VNTR estimate can then be compared to the sum of the phased allele length estimates for the 
two transmitted haplotypes, and assuming independence of parental haplotypes, this correlation 
satisfies the relationship: 

"child	𝑅!" = 𝑅!(diploid	estimates, sum	of	transmitted	phased	estimates)
= 𝑅!(diploid	estimates, truth) ⋅ 𝑅!(phased	estimates, truth) 

We can thus estimate phasing accuracy by dividing the quantity on the left (obtained in trio 
children) by the estimated accuracy (i.e., 𝑅! vs. truth) of the diploid VNTR content estimates we 
obtain from read-depth. Assuming unbiased error in diploid VNTR estimates, this latter quantity 
can in turn be estimated as the correlation between diploid estimates obtained from independent 
sequencing of monozygotic twins, or more generally, “IBD2” sib-pairs who share both 
haplotypes IBD (i.e., inherited the same allele from their mother and inherited the same allele 
from their father): 

𝑅*C(diploid	estimates, truth) = 𝑅(diploid	estimate	in	sib	1, diploid	estimate	in	sib	2) = "IBD2	𝑅" 

Putting these two relationships together, we obtain: 

𝑅!-(phased	estimates, truth) =
child	𝑅!

IBD2	𝑅  

The exome-sequenced UK Biobank cohort that we analyzed contained 613 sib-pairs, one-quarter 
of which are expected to be IBD2 at a given locus. We readily identified high-confidence IBD2 
sib-pairs based on at most 3 mismatching SNP-array genotypes within ±1 Mb of each VNTR 
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(computed using plink (83) v1.9), from which we obtained IBD2	𝑅 estimates with reasonably 
low noise. 

The cohort contained far fewer complete trios, such that we needed to adapt the above approach 
to instead use “pseudo-trios”: i.e., “pseudo-children” each of whose haplotypes had a long IBD 
match with a “surrogate parent” in the data set. We identified pseudo-trios by starting with long 
IBD matches among related individuals previously identified by UK Biobank (6) (specifically 
requiring either >3 cM IBD between 1st-degree relatives or >5 cM IBD between more-distant 
relatives) and then identifying the best surrogate for the opposite haplotype of either member of 
the related pair, determining that a pseudo-trio had been completed if a surrogate with >3 cM 
IBD could be found. (In these computations, we approximated IBD length with the average of 
no-error and 1-error IBS, requiring this average to be >0.5 cM on either side of the VNTR.) This 
approach identified roughly 600 pseudo-trios per locus, which sufficed to obtain 
"child	𝑅!"	estimates with low noise. 

Benchmarking imputation accuracy was much simpler using the standard cross-validation 
approach: we left out 5% of individuals in the cohort, phased the remainder of the cohort, and 
then imputed into the left-out individuals, estimating imputation accuracy as: 

𝑅!-(imputed	estimates, truth) =
𝑅!(imputed	estimates, left	out	estimates)

IBD2	𝑅  

One important caveat of the above benchmarks is that they assume unbiasedness of errors in 
read-depth-based estimates of diploid VNTR content. In reality, exome sequencing coverage 
depths at VNTRs can be biased by the presence of paralogous sequence variants (PSVs) within 
repeat units (that can subtly affect exome capture) or by read-mapping biases for very short 
alleles. While these biases did not produce first-order errors in either our allele length estimates 
or our estimates of phasing or imputation accuracy, we also performed imputation accuracy 
benchmarks by comparing imputed allele lengths derived from WES-read-depth to diploid 
VNTR content estimated from WGS-read-depth (which was available to us for 48 UK Biobank 
participants included in a WGS pilot study) and subsequently to allele lengths directly measured 
from long-read sequencing technologies. Our analyses of these benchmarks are described in the 
Supplementary Text 4. 

Optimization of phasing and imputation parameters 

Our phasing algorithm included five constant parameters (ℓ", 𝐾#$%, 𝑝&'(, 𝜎12#, and 𝜎'&&) that 
determined relative copying weights of reference haplotypes with different lengths of IBS-
sharing and determined the relative weighting of information derived from haplotype-sharing vs. 
direct read-depth-based estimates. The optimal choices of these parameters are expected to differ 
among VNTRs depending on their mutational characteristics (e.g., mutation rate) and sequencing 
properties (e.g., average number of VNTR-derived fragments sequenced). We therefore 
incorporated parameter-tuning into our phasing algorithm to enable each VNTR to be analyzed 
using parameters tailored for the VNTR. 
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The simplest approach to tuning would be to employ a comprehensive search across the 
reasonable parameter space for each parameter, benchmarking phasing accuracy (as described 
above) for each parameter configuration and then selecting the choice of parameters that yielded 
the highest accuracy. However, this brute-force approach was computationally intractable given 
the five-dimensional parameter space and nontrivial amount of computation required to perform 
each phasing analysis. 

To optimize parameters in a computationally tractable way, we instead employed a simulated 
annealing strategy (84) in which we explored the parameter space by iteratively: (1) proposing a 
random step (i.e., change to a single parameter); (2) evaluating phasing accuracy after one more 
full iteration (leaving out and updating each individual’s allele length estimates in turn) using 
either the current or proposed new parameter configuration; and (3) accepting the proposed 
parameter change if it achieved acceptable accuracy (relative to the accuracy obtained by 
running the full iteration using the current parameter configuration). This stochastic search 
technique was intended to improve robustness to local optima. 

In detail, our algorithm began by initializing the parameters to: 

ℓ+ = 2	cM, 𝐾',- = 50, 𝑝#%( = 0.05, 𝜎%## = std. dev. (diploid	estimates) ⋅ √IBD2	𝑅	, 𝜎./' =
0!""
*
	 

and initializing both allele lengths of each individual to half the diploid estimate for that 
individual. We then ran 𝑇 = 500 phasing iterations, each of which updated each individual’s 
phased allele lengths once, proceeding through the individuals in random order. We designated 
the first 20 iterations as burn-in iterations in which no parameter modification was proposed. In 
each subsequent iteration, we proposed updating one parameter (cycling through the five 
parameters in turn) by multiplying it by a random factor drawn from the exponential of a uniform 
distribution: expJ𝑈(−𝑐, 𝑐)L, where 𝑐 = 1 − 6

7
 at iteration 𝑡 of 𝑇 for parameters ℓ", 𝐾#$%, 𝑝&'( 

and 𝑐 = /
8
F1 − 6

7
G for parameters 𝜎12# and 𝜎'&& (which had a smaller range of interest). We 

further cropped proposed values of 𝐾#$% to stay within the interval [25, 100] and proposed 
values of 𝑝&'( to at most 0.9. We then computed the "child	𝑅!" benchmark after one full iteration 
using either the current parameter configuration or the new proposal. We always accepted the 
proposed step if it achieved a higher "child	𝑅!" benchmark and always rejected if it reduced 
"child	𝑅!" by >0.001; if it only slightly reduced accuracy, we probabilistically rejected it with 
increasing probability as iterations progressed: 

𝑃&'9':# = min	(1, 108 ⋅ (child	𝑅!	reduction) ⋅ max	(0.1, 𝑡/𝑇)) 

After 500 such iterations, we reverted to the “phasing-optimized” configuration of parameters 
and allele length estimates that achieved the highest phasing accuracy across all iterations. Using 
these allele length estimates, we computed “imputation-optimized” values of the parameters ℓ", 
𝐾#$%, 𝑝&'( by benchmarking imputation accuracy in a grid search over these three parameters. 
Separately, we ran 10 final iterations using the “phasing-optimized” parameters to obtain final 
phased allele length estimates for all individuals in the cohort (no longer leaving any individuals 
out for the purpose of computing accuracy benchmarks). 
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To minimize the effects of stochasticity, we ran the entire algorithm described above 5 times for 
each VNTR using 5 different random seeds (used to randomize the update order within each 
iteration and to randomize parameter-update proposals) and chose the run that produced the 
highest estimated phasing accuracy.  
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4  Optimizing genotyping of VNTRs with potential phenotypic effects 
 
For each VNTR for which our association analysis and fine-mapping pipeline identified a 
potentially-causal phenotype association, we examined the VNTR allele length estimates 
produced by our default genotyping and phasing approach to identify potential improvements 
and to calibrate allele lengths to the absolute scale of repeat copies. (As described above, our 
initial analysis of normalized read-depths only produced unscaled allele length estimates relative 
to the mean.) For most VNTRs, we found that we could modestly improve the accuracy of our 
allele length estimates by optimizing the VNTR boundaries used to select aligning reads, 
separately genotyping and phasing repeat subtypes distinguished by paralogous sequence 
variants (PSVs) within the VNTR, or directly genotyping very short alleles using spanning reads. 
These improvements reduced both noise and bias in our estimates. 

The overall changes in allele length estimates between our initial genotyping (used in the initial 
analyses reported in Tables S1 and S3) and optimized genotyping (used elsewhere in the paper) 
were modest (𝑅!(initial, optimized) = 0.97 (LPA), 0.88 (ACAN), 0.93 (TENT5A), 1.00 (MUC1), 
0.82 (TCHH)).  As such, discovery of VNTR-phenotype associations could be performed 
robustly without such optimizations, with further tuning performed on just the subset of VNTRs 
identified to be of particular interest (to ensure the accuracy of our deeper fine-mapping analyses 
identifying nearby SNPs likely to also exert causal effects on phenotypes).  We also expect the 
need for such optimizations to be substantially reduced in studies that perform VNTR 
genotyping from whole-genome sequencing data (rather than exome-sequencing data, which 
creates the challenge of correcting for exome capture bias). 

LPA 

Sequence variation within the LPA KIV-2 VNTR. 

LPA alleles typically contain 10-30 repeat units of the KIV-2 VNTR, and different repeats within 
an allele often harbor sequence variation. In particular, the first exon (“exon 1”) of the KIV-2 
repeat carries three common synonymous variants that distinguish three frequently-observed 
repeat types labeled A, B, and C in the literature (12) (Fig. S2A). Repeat type A is the most 
common type and accounts for 5 of the 6 KIV-2 repeats that appear in the GRCh38 reference 
sequence; repeat type B is also common and accounts for 1 of the 6 KIV-2 repeats in the 
GRCh38 reference (cf. Fig. 2 of Schmidt et al. (12)); while repeat type C is rare, accounting for 
only ~1% of all repeats (85). 

Bias in IDT xGen v1 exome capture of KIV-2 repeat types. 

This common variation within the coding region of the KIV-2 VNTR created a challenge for 
accurate estimation of VNTR lengths from exome sequencing read counts that was compounded 
by the design of the IDT xGen v1 exome capture panel used to perform exome-sequencing of 
UK Biobank samples. The xGen v1 panel did not contain any probes targeting any of the 6 KIV-
2 repeats in the GRCh38 reference (presumably because this region had been filtered as 
repetitive). However, it did contain probes targeting each exon of the adjacent KIV-3 repeat, 
which share moderate-to-high sequence similarity with KIV-2 exons 1 and 2. Specifically, exon 
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1 of KIV-3 is identical to the type-B exon 1 (“1B”) of KIV-2, while exon 2 of KIV-3 is similar to 
but somewhat diverged from exon 2 of KIV-2. 

This capture design had two main effects on counts of read alignments in the KIV-2 region: 

1. Reads aligning to exon 1B repeats in the GRCh38 reference (namely, the single KIV-2 
repeat of type B which exactly matches exon 1 of KIV-3) represented “on-target” capture 
by the pair of 120bp probes that had been designed for exon 1 of KIV-3. In contrast, 
reads aligning to exon 1A repeats in the GRCh38 reference (i.e., the five KIV-2 repeats 
of type A) represented “off-target” capture, which resulted in generation of fewer reads 
per exon 1A unit within an allele than per exon 1B unit within the same allele. 

2. Reads aligning to KIV-2 exon 2 repeats in the GRCh38 reference (namely, the six exon 2 
repeats of KIV-2 as well as the exactly-matching exon 2 of KIV-1) all represented “off-
target” capture from probes that had been intended to capture the somewhat-diverged 
exon 2 of KIV-3. Consequently, KIV-2 exon 2 read counts were unbiased with respect to 
repeat types but were greatly diminished (and thus noisier) due to reduced off-target 
capture efficiency. 

Our initial analysis pipeline had simply counted reads mapping to the full repeat region (i.e., 
KIV-1 exon 2 + six repeats of KIV-2 + KIV-3 exon 1) and thus incurred downward bias of allele 
length estimates for alleles with larger fractions of type-A repeat units (due to the less-efficient, 
off-target capture of exon 1A). 

Correction of capture bias by separate estimation of type-A and type-B repeat copy numbers. 

To circumvent the biased capture of type-A vs. type-B repeats, we devised a modified 
genotyping strategy that independently estimated the copy number of each repeat type within 
each individual (and after phasing, within each allele). Specifically, we considered only read 
pairs that mapped to the seven repeats of exon 1 and its intronic flanks (i.e., the five exon 1A 
repeats in the KIV-2 region of the GRCh38 reference and the two exon 1B repeats, one in KIV-2 
and one in KIV-3) and subdivided these read pairs into (i) those that mapped unambiguously to 
the 1A sequence (restricting to bases with quality ≥25); (ii) those that mapped unambiguously to 
the 1B sequence; and (iii) those that mapped equally well to 1A and 1B. We then performed our 
read-depth normalization procedure on (i) and (ii) separately (not counting reads in category (iii) 
or reads aligning to exon 2). 

This strategy avoided the problem of capture bias because counts of reads generated from 1A vs. 
1B sequence were no longer being compared to one another. As such, “1A read-depths” scaled 
linearly with KIV-2 type-A content and “1B read-depths” scaled linearly with KIV-2 type-B 
content, albeit with different constant factors due to capture bias. 

Calibrating type-A and type-B read-depths to estimate absolute KIV-2 copy numbers. 

Our modified genotyping procedure left one remaining task: determining the appropriate scaling 
factors to convert normalized 1A and 1B read-depths (that our pipeline normalized to a mean of 
1 per diploid individual) to absolute estimates of repeat counts of types A and B and ultimately 
KIV-2. We accomplished this task by making use of the following observations: 
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• Absolute calibration of 1B read-depth. After phasing, the distribution of phase-resolved 
1B read-depths exhibited discrete peaks with constant spacing, indicating that the 
appropriate scaling factor (~5.2) to use to obtain absolute type-B repeat counts could 
simply be selected to make the peaks become integer-valued (Fig. 2B). 

• Relative calibration of 1A vs. 1B read-depth. Phased 1A read-depths were insufficiently 
precise to resolve integer-spaced peaks (Fig. S2B), so we instead leveraged reads aligning 
to exon 2 (which were equally affected by off-target capture across all KIV-2 repeat 
types) to calibrate 1A and 1B read-depth against one another (by regressing exon 2 read-
depth on 1A and 1B read-depth). This computation yielded an estimated ratio of ~6.7 for 
the contribution of 1A normalized read-depth vs. 1B normalized read-depth (which 
corroborated with estimates of 1A vs. 1B copy number from whole-genome sequencing 
of 48 UK Biobank participants included in a WGS pilot study); combining this 
information with the 1B scaling factor of ~5.2 produced a scaling factor of ~34.9 to 
convert 1A read-depth to type-A repeat counts. 

• Subtraction of 1 repeat corresponding to KIV-1 exon 2 + KIV-3 exon 1. Finally, we 
subtracted 1 from the total type-A + type-B count to adjust for our read counts including 
one neighboring exon on either side of KIV-2 (KIV-1 exon 2 = KIV-2 exon 2, and KIV-3 
exon 1 = KIV-2 exon 1B). 

Combining the above gave the calibration formula: 

KIV-2	copy	number = 	34.9 × (1A	phased	read-depth) + 5.2 × (1B	phased	read-depth) − 1 

for obtaining absolute KIV-2 VNTR haploid copy number estimates from phased, normalized 
1A and 1B read-depths. We verified that the absolute KIV-2 copy number distribution we 
obtained in this way was in close agreement to literature (cf. Fig. 2 of Kraft et al. (86); note that 
this figure counts the total number of KIV repeats, which is 9 more than the number of KIV-2 
repeats). 

Further minor optimization of 1A read-depth measurements. 

We performed one final optimization that slightly improved the accuracy of type-A repeat count 
estimates by making use of an additional paralogous sequence variant (119bp into the intron 
downstream of KIV-2 exon 1A, chr6:160616998:T>C in hg38; Fig. S2A) that marked a repeat 
expansion constituting ~30% of all KIV-2 repeat units (averaged across all European alleles), but 
present only in a minority of alleles (Fig. S2B). We labeled the type-A repeats carrying the 
reference allele “A1” and those carrying the alternate allele “A2”. 

Subdividing reads derived from type-A repeats into A1 vs. A2 (vs. ambiguous) groups offered 
the opportunity to separately estimate A1 and A2 repeat content and then tailor the parameters of 
our phasing and imputation algorithm separately for the A2 repeat expansion vs. the A1 repeats, 
potentially improving accuracy. This task was complex but achievable with some care: 

• Most read pairs that aligned uniquely to exon 1A do not span the 119bp-downstream 
variant, so directly assigning reads to A1 or A2 was not feasible. 
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• However, we could use reads that span the PSV to approximately partition type-A-
derived reads according to the observed ratio of T:C bases at the PSV. This approach 
worked well because ~40% of participants were homozygous for zero copies of A2, such 
that the partitioning lost no accuracy for such individuals. 

• We still needed to restrict reads that contain the REF allele (T) to those that arise 
from type-A repeats (and discard those that come from type-B repeats). We accomplished 
this task by separating the PSV-spanning reads into those that aligned unambiguously 
to 1A sequence (which we counted), those that aligned unambiguously to 1B sequence 
(which we discarded), and those that did not align uniquely to either (which we pro-rated 
by the estimated fraction of type-A repeats in the individual). 

• This approach produced an approximately unbiased partition of type-A reads into A1 vs. 
A2 measurements that was fairly noisy (because a typical sample only had ~100 reads 
that spanned the PSV and could be used for partitioning, in contrast to the ~1000 reads 
that mapped to type-A sequence). However, both the A1 and A2 measurements phased 
very well, enabling an improvement in accuracy by repartitioning 1A reads according to 
post-phasing (“refined”) A1 and A2 estimates and then running another iteration of 
phasing. 

In our final KIV-2 length estimates, we used an average of “1A phased read-depth” obtained 
with and without this additional optimization (to balance the trade-off between better phasing 
accuracy after partitioning A1 vs. A2 but more noise in read-depth estimates). 

Finally, we note that our genotyping procedure did not explicitly treat type-C repeats. As such, 
reads generated from type-C repeats contributed to a mixture of the other repeat type counts 
depending on which type-informative paralogous sequence variants they spanned (which 
determined whether they aligned best to A1, A2, or B). We expect that any biases introduced by 
this behavior are negligible given the rarity of type-C repeats (only ~1% of all KIV-2 repeat units 
(85)). 

Benchmarking accuracy of KIV-2 allele length estimates. 

Our cross-validation-based benchmarks of phasing accuracy (based on pseudo-trios) estimated 
high accuracy of phased estimates of KIV-2 repeat types A (𝑅!- = 0.95) and B (𝑅!- = 0.98) and 
subtypes A1 (𝑅!- = 0.99) and A2 (𝑅!- = 0.99), with similarly-accurate imputation (𝑅!- =
0.92, 0.98, 0.97, 0.99, respectively). Assuming approximate independence of errors across 
different repeat types, we estimated the RMSE of total KIV-2 length created by combining A+B 
estimates or by combining A1+A2+B estimates (with appropriate weighting) to be ~1.1 and 

~0.9, respectively (using the formula 𝑅𝑀𝑆𝐸 ≈ 	y∑ 𝑅!-6;<=> ⋅ (allele	length	variance)), 

suggesting that our final KIV-2 length estimates (which averaged estimates from these two 
methods) likewise achieved RMSE of approximately 1 repeat unit. 

We corroborated these benchmarks by separately comparing total KIV-2 allele lengths (diploid 
VNTR content) derived from our WES-based pipeline to WGS read-depth-based estimates we 
generated for 48 UK Biobank participants for whom WGS data had independently been 
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generated by sequencing centers at the Broad Institute and BGI. Of the 48 participants, 6 had 
been exome-sequenced, and we imputed WES-based KIV-2 lengths into the remaining 42 
participants (by separately imputing counts of each repeat type). 

The WGS read-depth-based KIV-2 length estimates were highly concordant between the Broad 
and BGI sequencing experiments (𝑅! = 0.99). Our WES-derived (mostly imputed) estimates 
also closely matched the WGS-based estimates (𝑅! = 0.95; Fig. S4B). We further validated 
WES- and WGS-derived KIV-2 allele length estimates using direct measurements from Bionano 
optical mapping in the HGSVC2 data set (14), obtaining results consistent with the above 
benchmarks (Figs. S5-S6; see Supplementary Text 5). 

ACAN 

Sequence variation within the ACAN VNTR. 

The 57bp repeat units of the ACAN VNTR harbor several common paralogous sequence variants 
(PSVs) that distinguish repeat units from one another. Two of the most common PSVs  affect 
adjacent bases of the repeat unit which belong to codons for adjacent amino acids; Doege et al. 
previously used these “diagnostic codons” to classify ACAN VNTR repeats into four types (29) 
(numbered 1-4; Fig. S3A). Examination of the ACAN VNTR sequence in the GRCh38 reference 
and in other long read-based genome assemblies (14) showed that repeat type 4 could be further 
subdivided into four common or low-frequency subtypes based on three additional PSVs 17bp, 
20bp, and 26bp downstream of the two “diagnostic” bases distinguishing repeat types 1-4 (Fig. 
S3A). 

Bias in IDT xGen v1 exome capture of ACAN VNTR repeat subtypes. 

The IDT xGen v1 exome capture panel tiled the ACAN VNTR GRCh38 reference sequence with 
120bp capture probes, with 12 probes falling fully within the VNTR region (resulting in mean 
exome-sequencing coverage of ~400x across the VNTR). Similar to LPA, this capture design 
created biases in counts of reads generated from fragments of ACAN VNTR alleles containing 
repeats of different types. Most of these biases were more subtle than at LPA because (i) 
different repeat types usually differed by only 1-2bp out of 57bp; (ii) the GRCh38 reference 
contained similar numbers of type-1 repeats (6), type-2 repeats (7), and type-3 repeats (9); and 
(iii) most European alleles contained few type-4 repeats (e.g., 3 in GRCh38). However, some 
alleles (and in particular, a 22-repeat allele observed at low frequency in Europeans (29)) carried 
an expansion of a subtype of repeat 4 not contained in GRCh38 and therefore not targeted by any 
capture probes, which led to under-counting of this repeat4 subtype by ~20% in our initial 
analyses. 

Correction of capture bias by separate estimation of copy numbers of repeat subtypes. 

To address this bias as well as subtler biases in counts of other repeat types, we again adopted a 
strategy of separately genotyping each repeat subtype. In contrast to LPA, the ACAN VNTR 
repeat unit (57bp) was shorter than the length of an exome-sequencing read (76bp), so instead of 
counting reads mapping to repeat subtypes, we counted occurrences of PSV “barcodes” carried 
by each subtype. For repeats 1-3, these “barcodes” consisted of only the two adjacent diagnostic 
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bases. When we observed a read alignment containing the bases (TA) indicative of repeat 4 at 
these positions, we further examined the bases 17bp, 20bp, and/or 26bp downstream (if present 
within the read) to determine whether the read could be assigned to one of the four repeat 4 
subtypes. (If the read contained the REF=G base at +17bp, we assigned it to either “rep4_00x” or 
“rep4_01x” based on only the base at +20bp, and if it contained the ALT=T base at +17bp, we 
assigned it to either “rep4_1x0” or “rep4_1x1” based on only the base at +26bp (Fig. S3A).) We 
considered reads that either fully aligned or aligned with soft-clipping on one side (CIGAR = 
76M or #M#S or #S#M) and required base quality ≥25 at all PSVs used in analysis. 

For each the seven repeat subtypes (repeats 1-3 and the four subtypes of repeat 4), we applied 
our normalization procedure to the “barcode counts” obtained in this manner, producing an 
analogue of “normalized read-depth” for each repeat subtype. We then applied our phasing 
algorithm to these normalized barcode-depths to partition these (unscaled) estimates of copy 
number into their haploid components. (For rep4_00x, we slightly modified the phasing 
algorithm to account for extreme heteroskedasticity—as the vast majority of alleles carried 0 or 1 
copies of this subtype whereas the low-frequency 22-allele carried 8 copies—by adjusting the 
model to assume that variance in count-based estimates increased linearly with the estimates, 
basing the parameters of the linear fit on observed differences between estimates in IBD2 sibs. 
We also applied this modification to improve phasing of repeat 2 content.) For all seven repeat 
subtypes, the phased estimates exhibited multimodal distributions with discrete peaks that scaled 
to integers upon identifying a suitable scaling transformation, enabling easy calibration of these 
estimates to absolute copy numbers (Fig. S3B). 

In addition to genotyping these seven common and low-frequency repeat subtypes, we also 
genotyped an eighth VNTR variant that amounted to a deletion of the ending repeat of the VNTR 
(the latter half of which is moderately diverged from all of the other repeat types; Fig. S3A). This 
ending repeat is found in nearly all ACAN alleles but deleted in a low-frequency African allele 
(AF=1% in UKB participants of African ancestry). To genotype loss of this repeat, we simply 
searched for reads mapping to the ACAN VNTR region that contained a unique sequence 
(AGGACATCAGCGGGCTTCCTTCTGGAGGAGAA) generated by loss of the ending repeat. 
Carriers were then easily identified as individuals with >10 reads containing this unique 
sequence. 

Combining all of these components (which we independently phased and calibrated to absolute 
copy-number counts) produced final VNTR allelic copy number estimates given by the formula: 

𝐴𝐶𝐴𝑁	VNTR	copy	number	(haploid)
= 6.36 ⋅ rep1 + 4.88 ⋅ rep2 + 31.18 ⋅ rep3 + 1.63 ⋅ rep4""? + 1.78 ⋅ rep4"/?	

																																			+	0.08 ⋅ rep4/?" + 1.89 ⋅ rep4/?/ − repE@$AA + 2.91 

The +2.91 constant term at the end mostly arises from the literature canonically considering two 
additional, more-diverged repeats to be part of the VNTR (despite their sequence divergence); 
we therefore added 2 repeats to the count for consistency with previous work. The remaining 
+0.91 constant adjustment corresponds to offsets of +0.49 and +0.42 that we needed to add to 
counts of repeat 1 and rep4_01x, respectively, to align the modes of their allele distributions to 
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integers. These two repeat subtypes constitute the first and last full repeats of nearly all ACAN 
VNTR alleles (based on long read assemblies (14)), and these first and last repeats are expected 
to generate fewer reads than interior repeat units due to the pre-VNTR and post-VNTR unique 
sequences not benefiting from capture enrichment from multiple capture probes, probably 
explaining these offsets. 

Benchmarking accuracy of ACAN VNTR allele length estimates. 

Our cross-validation-based benchmarks of phasing accuracy (based on pseudo-trios) estimated 
high accuracy of phased estimates of all ACAN VNTR repeat subtypes (estimated 𝑅!-  vs. truth of 
1.00 (rep1), 1.00 (rep2), 0.97 (rep3), 1.00 (rep4_00x), 0.93 (rep4_01x), 1.00 (rep4_1x0), and 
0.95 (rep4_1x1)), from which we estimated (following the same procedure we used with LPA) 
that our combined estimates of (haploid) ACAN VNTR copy numbers had an RMSE of ~0.9 
repeat units. 

Unlike with LPA, WGS data from the UK Biobank WGS pilot study was not useful for 
corroborating our allele length estimates using a different technology (because WGS read 
coverage at ACAN was much lower—and therefore noisier—than WES read coverage at ACAN, 
which had been greatly boosted by the tiling of the VNTR with 12 exome capture probes). 
However, we verified that the overall distribution of allele lengths was very consistent with 
literature (cf. Table 1 of Doege et al. (29) and Fig. 3 of Horton et al. (87)), with common 26-, 27-
, and 28-repeat unit alleles and low-frequency alleles with 13-33 repeats. We further validated 
WES-derived allele length estimates against directly-measured allele lengths from the HGSVC2 
long-read assemblies (14), observing RMSE of ~1 repeat unit as expected (Fig. S7; see 
Supplementary Text 5). 

In addition to recovering the previously reported distribution of common alleles, we also 
identified rare (combined European allele frequency ~0.06%) very long alleles with ~40-45 
copies of the VNTR that had not been reported in previous literature. We verified that these 
alleles belonged to IBD clusters (including a 16-haplotype cluster with ~42 repeats and 7-
haplotype and 3-haplotype clusters with ~44 repeats), consistent with true inherited variation. 

TENT5A 

Short size of TENT5A VNTR alleles produces bias in read-depth measurements. 

The TENT5A VNTR was the shortest repeat we studied in detail, consisting of a 15bp repeat unit 
repeated only 2-7 times per allele (88). Phased allele length estimates from our initial genotyping 
of this VNTR produced six clearly distinguishable modes, but the spacing of the modes was 
uneven, and in particular, the 2-allele appeared to generate much lower read-depth than expected. 
This behavior was probably driven by mapping bias, as reads spanning the full 30bp of the 2-
allele do not map directly to the GRCh38 reference sequence (which contains a 4-allele). 

Improved TENT5A VNTR genotyping by combining spanning-read and read-depth information. 

The above observation suggested an alternative genotyping strategy incorporating read-level 
information, as smaller alleles (specifically, the 2-allele, 3-allele, and 4-allele) of the TENT5A 
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VNTR were consistently spanned by several 76bp reads indicating their presence. (We also 
searched for evidence of 0-alleles or 1-alleles but did not find any evidence that such alleles 
existed.) Additionally, 76bp reads that partially overlapped the VNTR could also inform of the 
presence of an allele of at least 5 repeats or an allele of at least 6 repeats (depending on the 
precise location of the read alignment relative to the VNTR). 

We therefore implemented a hybrid genotyping strategy that combined direct read-level 
information (used to identify short alleles) with read-depth information (used to estimate the 
lengths of longer alleles). Specifically, for each individual, we applied the following procedure: 

• Identify the minimum- and maximum-length allele indicated by direct read-level 
evidence (which could be the same allele, indicating a homozygote). 

• If the maximum-length allele indicated has length ≤5, set the individual’s (unphased) 
genotype to be the minimum-length and maximum-length allele. 

• Otherwise: 
o If the minimum-length allele has length ≤4, then estimate the length of the longer 

allele as 5 + 2.5 * (# reads indicating ≥6 repeats) / (# reads indicating ≥5 repeats) 
o Otherwise, estimate the sum of the lengths of the two alleles as twice the above 

quantity: 10 + 5 * (# reads indicating ≥6 repeats) / (# reads indicating ≥5 repeats). 

The intuition behind the ratio (# reads indicating ≥6 repeats) / (# reads indicating ≥5 repeats) was 
that the 76bp read length almost exactly corresponds to the length of a 5-allele, such that longer 
alleles (specifically, 6-alleles and 7-alleles) result in generation of additional reads mapping fully 
within the VNTR (and indicating ≥6 repeats) in addition to reads partially overlapping the VNTR 
on either side (indicating ≥5 repeats). Dividing (# reads indicating ≥6 repeats) by (# reads 
indicating ≥5 repeats) allowed an easy adjustment for variation in sequencing depth, leaving just 
the need for a calibration factor which we empirically estimated to be ~2.5. 

Further minor improvements to TENT5A VNTR genotyping. 

The above strategy provided quite accurate, well-calibrated diploid genotype estimates that we 
could analyze using our standard phasing and imputation algorithm (which treated all genotype 
estimates as continuous, real-valued measurements). To obtain a further slight improvement in 
accuracy, we optimized TENT5A VNTR genotyping in two additional ways. 

First, we adapted the above approach of estimating lengths of longer alleles to make use of our 
read-depth normalization pipeline (normalizing read-depths of each individual against read-
depths of other individuals who exhibited the closest-matching exome-wide coverage profiles). 
Specifically, we ran a first round of phasing analysis on the diploid genotype estimates computed 
as above and identified the subset of individuals deemed to be heterozygous for a 6-allele and a 
shorter allele. We then calibrated counts of reads indicating ≥6 repeats (normalized for exome-
wide sequencing coverage) in each individual against the mean of the corresponding quantity 
across a matched panel consisting of the (6-allele, shorter allele)-heterozygotes among the 500 
individuals with closest-matching exome-wide coverage profiles. This strategy removed the need 
to calibrate counts of reads indicating ≥6 repeats against counts of reads indicating ≥5 repeats. 
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Second, we adapted our phasing algorithm to account for the (partially) discrete nature of 
genotypes we obtained from our hybrid genotyping pipeline. Specifically, to leverage the hard-
called allele lengths (derived from read-level information) that our hybrid approach produced in 
individuals who carried shorter alleles, we modified our phasing algorithm to overwrite allele 
length estimates with hard-called alleles as appropriate. In detail, during each update of an 
individual’s phasing, we ran our algorithm as usual but then post-processed the estimated allele 
lengths as follows: (i) if exactly one hard-called allele was available, we overwrote the shorter of 
the two estimated allele lengths with the hard-call; (ii) if hard-calls were available for both 
alleles (such that the only uncertainty was their phase), we overwrote both estimated allele 
lengths with the hard-calls in sorted order. 

Benchmarking accuracy of TENT5A VNTR allele length estimates. 

Our cross-validation-based benchmarks of phasing accuracy (based on pseudo-trios) and 
imputation accuracy (based on left-out samples) estimated 𝑅!-  vs. truth of 0.98 and 0.95, 
respectively. 

We also benchmarked the accuracy of our allele length estimates in the 48 UK Biobank 
participants with available WGS pilot data (6 exome-sequenced and the other 42 genotyped at 
TENT5A via our imputation pipeline). TENT5A VNTR alleles of all lengths could be directly 
genotyped from 151bp reads from WGS, so we simply compared diploid genotypes from WGS 
to those from our WES-based pipeline, observing very high accuracy consistent with our cross-
validation results (𝑅! = 0.97; Fig. S4B). 

MUC1 

Sequence variation within the MUC1 VNTR. 

Alleles of the MUC1 VNTR contain abundant intra-allelic variation at multiple positions within 
the 60bp repeat unit (35). Repeat units within the GRCh38 assembly of the MUC1 VNTR 
contain numerous variations of the canonical repeat sequence, partly reflecting this variation and 
partly reflecting the difficulty of correctly assembling this repetitive sequence: in addition to 
likely-true PSV variation, the MUC1 VNTR sequence in GRCh38 also contains several 
erroneous frameshift-inducing insertions and deletions that prevent the full VNTR from being 
annotated as being contained within a large exon. For this reason, the IDT xGen v1 capture panel 
only contained two 120bp probes within the MUC1 VNTR (because most of the VNTR sequence 
had been annotated as intronic). 

Based on the effects of within-VNTR sequence variation on read-depth-based estimates of 
diploid VNTR content that we observed at LPA and ACAN, we expect that the MUC1 allele 
lengths estimated by our genotyping, phasing, and imputation pipeline were probably also 
modestly biased, with repeat units more closely matching the targeted repeats producing more 
efficient capture (and thereby being slightly overcounted). However, in light of the complexity of 
intra-allelic variation at MUC1 and the fact that our analyses of MUC1 only explored the first-
order effects of VNTR length variation (e.g., examining phenotypic effects at the resolution of 
short vs. long vs. very long alleles, which were clearly distinguished in our allele length 
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estimates), we did not attempt to optimize our read-depth-based genotyping approach beyond 
slightly adjusting the right endpoint of the VNTR (initially called at chr1:155192051, which we 
revised to chr1:155192006 after examining the GRCh38 sequence). This change had a negligible 
effect on allele length estimates. 

Calibrating MUC1 VNTR allele length estimates. 

We did still need to calibrate the allele lengths produced by our genotyping and phasing 
algorithm (which provided only relative length estimates). To do so, we compared our estimated 
distribution of phased allele lengths to allele length histograms obtained by previous studies that 
directly measured MUC1 allele lengths using gel electrophoresis (34, 89) and to MUC1 allele 
lengths derived from long reads spanning the VNTR in the HGSVC2 data set (14). These studies 
suggested a short-allele mode of ~37 repeats and a long-allele mode of ~73 repeats, so we 
applied a suitable affine transformation (i.e., scaling and shift) to our estimates to match these 
values. 

Benchmarking accuracy of MUC1 VNTR allele length estimates. 

Our cross-validation-based benchmarks of phasing and imputation accuracy were very high 
(𝑅!- ≥ 0.98), but we expected that these estimates were somewhat inflated because they were 
unable to assess error introduced by consistent biases from varying exome capture efficiency for 
alleles carrying different repeat variants. 

The MUC1 VNTR was sufficiently long and variable to be accurately measured using WGS 
read-depth, so we estimated diploid VNTR content in the 48 individuals in the UK Biobank 
WGS pilot study by analyzing read alignments using the Genome STRiP pipeline (71). 
Comparing these estimates to estimates from our WES-based pipeline for these 48 individuals (6 
exome-sequenced, 42 with imputed MUC1 alleles) showed high accuracy (𝑅! = 0.90; Fig. 
S4B). This 𝑅! value measures both error in our WES-based estimates and error in the WGS-
based estimates and thus serves as a likely lower bound on the true accuracy of allele length 
estimates from our WES pipeline. We subsequently also validated WES-derived allele length 
estimates against direct measurements from long reads spanning the VNTR in the HGSVC2 data 
set (14), obtaining results consistent with the above (Fig. S8; see Supplementary Text 5). 

We note that the high 𝑅! values (which are somewhat counterintuitive given the poor coverage 
of the MUC1 VNTR by exome capture probes) are driven in part by the bimodality of the MUC1 
VNTR allele length distribution: i.e., distinguishing alleles with ~30-40 repeats from those with 
~70-80 repeats is relatively easy. 

TCHH 

Optimizing the boundary of the 18bp TCHH VNTR. 

Our initial genotyping of the TCHH VNTR counted reads aligning to the repeat region defined 
by chr1:1521119170-152112225. However, closer inspection of this region showed that it 
contains two distinct repeats, as previously described (39): the 18bp (6 amino acid) repeat we 
wished to genotype, and a 39bp (13 amino acid) repeat to its right (upstream in transcription). 
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The latter repeat appears to be much less polymorphic (based on long-read assemblies from the 
HGSVC2 data set (14)) and had a much weaker association with male pattern baldness in UK 
Biobank: P=1.4 x 10-5 for the 39bp repeat vs. P=5 x 10-32 for the 18bp repeat. In our optimized 
genotyping, we therefore restricted read-counting to reads containing only repeats of the 18bp 
sequence, which corresponded to mapping within the region chr1:152111930-152112103. Doing 
so improved concordance of estimates in IBD2 sib-pairs to IBD2	𝑅 = 0.91. 

Calibrating TCHH VNTR allele length estimates. 

To obtain absolute TCHH VNTR length estimates from the relative allele length estimates 
produced by our genotyping and phasing pipeline, we first estimated the constant offset 
corresponding to the allele length that would generate zero observed reads aligning within the 
VNTR. We did so using the following reasoning: 

• The GRCh38 reference allele for TCHH contains 8 copies of the 18bp repeat unit 
(followed by 1 additional copy of the same 18bp repeat that is considered to belong to the 
adjacent 39bp repeat). 

• To align to the region chr1:152111930-152112103, a 76bp read generated from the 8- 
allele in the reference must start between 152111930 and 152112103 – 75 (inclusive). 

• For an allele carrying a different number of repeats 𝑛, the size of the region on the allele 
from which such reads can be generated increases by 18(𝑛 − 8). 

• Solving for 152111929 = 152112103 − 75 + 18(𝑛 − 8) gives 𝑛 = 2.5 as the offset 
corresponding to the allele length that corresponds to zero observed reads. 

Second, we roughly estimated the mean European TCHH VNTR allele length as ~8.5 repeat 
copies based on long read assemblies (14) and a corroborating analysis of insert sizes of paired-
end reads from high-coverage WGS of 1000 Genomes EUR samples. 

Combining these two pieces of information yielded the affine transformation we applied to 
obtain absolute estimates of TCHH VNTR allelic copy numbers.  

Benchmarking accuracy of TCHH VNTR allele length estimates. 

Our cross-validation-based benchmarks of phasing accuracy (based on pseudo-trios) and 
imputation accuracy (based on left-out samples) estimated 𝑅!-  vs. truth of 0.78 and 0.71, 
respectively, indicating the difficulty of imputing this VNTR, which is poorly tagged by all 
nearby SNPs. We expected that these cross-validation estimates of 𝑅!-  vs. truth were probably 
fairly accurate given that alleles of the 18bp TCHH VNTR harbor very little intra-allelic 
variation (and are thus unlikely to suffer exome capture bias). Comparison of WES-derived allele 
length estimates to directly-measured allele lengths from the HGSVC2 long-read assemblies (14) 
corroborated these results (Fig. S9; see Supplementary Text 5). 

RRBP1 

Our VNTR ascertainment pipeline identified a 30bp repeat in RRBP1 with 4 copies in GRCh38 
spanning chr20:17659123-17659247 that our initial analysis indicated exhibited heritable 
variation (IBD2	𝑅 = 0.47, phasing 𝑅!- = 0.41) that associated potentially-causally with height. 
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Upon closer inspection of the GRCh38 reference sequence in this region, we observed that the 
flanking sequence contained a total of ~40 approximate repeats (with varying levels of 
divergence from the 30bp repeat unit appearing in 4 consecutive perfect copies); however, 
expanding the region used for read-counting to include the full approximate repeat region 
reduced sib-pair correlation, suggesting that the repeat variation might be more local. 

We attempted to optimize the boundaries of the read-counting region to improve genotyping (as 
measured by sib-pair correlation) and found that counting reads aligning fully within the region 
chr20:17659101-17659347 and containing sequence distinguishing the main repeat unit from 
nearby repeats (TTGCCCTGGTTCTGGGCCCCC) appeared to somewhat improve genotyping 
and phasing accuracy (IBD2	𝑅 = 0.51, phasing 𝑅!- = 0.56). However, rerunning the association 
and fine-mapping analysis using the updated allele length estimates reduced confidence that the 
association with height was causal (FINEMAP posterior probability = 0.33), so we did not 
perform further follow-up analyses at this locus. 

Further work will be required to elucidate the nature of VNTR variation in RRBP1 and whether it 
influences height. A recent study using long-read sequencing indicated that the GRCh38 
assembly may be inaccurate at this locus, with RRBP1 alleles carrying insertions (relative to 
GRCh38) of 15-16 repeats of a 30bp unit presumably corresponding to this VNTR (90). 
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5  Validation of VNTR genotyping using HGSVC2 long-read data 
 
We performed additional validation of WES-derived VNTR allele lengths using the HGSVC2 
data set (14), which included PacBio long-read sequencing data and haploid genome assemblies 
for N=64 unrelated haplotypes of 1000 Genomes participants as well as Bionano optical mapping 
data for most of the same individuals. 

To enable validation against VNTR allele lengths directly measured by HGSVC2 data, we 
imputed our WES-derived VNTR length estimates from UK Biobank exomes (N~50K) into 
SNP-haplotypes of 1000 Genomes participants. For ACAN and TCHH, we imputed into the 
assembly-based SNP-haplotypes generated by HGSVC2 (freeze4); for MUC1 and LPA (at which 
longer VNTRs alleles created errors in assembly), we imputed into SNP calls from 30x WGS of 
1000 Genomes samples (70) that we rephased using Eagle2 (--Kpbwt=100000, --pbwtIters=3) 
using the full UKB cohort (N~487K) as a reference panel, restricting analysis to variants typed 
on the UKB SNP-array with concordant EUR allele frequencies (absolute difference <0.1). 

We then compared imputed VNTR allele lengths to allele lengths derived from the following 
types of data generated by HGSVC2: 

• Assembled VNTR alleles. Ebert et al. (14) reported that the HGSVC2 assemblies 
accurately captured structural variants of length up to ~5kb, which was sufficient to 
genotype the shorter VNTRs (ACAN and TCHH; we did not analyze the very short 
TENT5A VNTR as we had already validated our TENT5A allele length estimates using 
spanning WGS reads). 

• PacBio CLR reads. For the MUC1 VNTR, which is longer (up to ~7kb) and has extreme 
GC content (~82%), we directly analyzed long reads that spanned the VNTR, and we 
genotyped haplotype-resolved allele lengths by finding optimal alignments of these 
spanning reads to sets of reference sequences containing each possible VNTR allele 
length flanked by each of the individual’s two surrounding SNP haplotypes. We 
performed alignment using dynamic programming (the Smith-Waterman algorithm). 

• Bionano optical mapping. For the LPA VNTR, which spans ~50-200kb (typically 
exceeding the length of PacBio CLR reads), we validated against structural variant calls 
that the HGSVC2 had generated from optical mapping of ultra-high molecular weight 
DNA (sufficiently long to span the full LPA VNTR). 

The results of these analyses (Figs. S5-S9) were very concordant with our previous 
benchmarking described in Supplementary Text 4 above (which was based on cross-validation 
within UK Biobank and comparison to WGS-derived estimates).  
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6  Genotyping paralogous sequence variants within the LPA KIV-2 VNTR 
 
The two coding exons and surrounding splice regions of the LPA KIV-2 VNTR contain several 
common variants and numerous rare variants that have been technically challenging to study 
because such “paralogous sequence variants” (PSVs) typically only affect 1 out of the 10-30 
KIV-2 copies within an LPA allele, complicating variant calling from high-throughput 
sequencing (85, 91). Previous studies have identified three such variants with clear effects of 
Lp(a) (a stop gain variant in exon 1 [ref. (92)], a canonical splice variant at the +1 donor site of 
exon 1 [ref. (91)], and a variant in the last base of exon 2 [ref. (20)] that impairs splicing) as well 
as a variant in the splice region preceding exon 2 that was observed to associate with reduced 
Lp(a) (P=0.0052 in N=23 carriers (85)). 

We sought to leverage whole-exome sequencing in 49,959 UK Biobank participants (together 
with phasing and imputation into the remainder of the UK Biobank cohort) to comprehensively 
explore the landscape of variation within and surrounding the KIV-2 exons and determine the 
effects of such variation on Lp(a) levels. These analyses, which we describe in this note and the 
following note, uncovered three additional rarer variants within the region that likely result in 
Lp(a)-null alleles (Table S4), in addition to recovering the effects of the four previously-
identified KIV-2 PSV variants (strengthening the evidence for causality of the fourth variant and 
quantifying the extent to which both non-LoF splice variants reduce Lp(a)). 

Ascertaining and genotyping PSVs from exome-sequencing data 

To ascertain and estimate (diploid) copy numbers of PSVs from exome-sequencing data, we 
merged read alignments across the seven paralogous copies of KIV-2 exons 1 and 2 and their 
intronic flanks in the GRCh38 reference (i.e., the six copies formally belonging to the KIV-2 
repeat as well as KIV-1 exon 2 and KIV-3 exon 1). We then identified reads supporting non-
reference variants, and for each non-reference variant identified within an individual, we 
estimated its diploid copy number—i.e., the number of KIV-2 repeats containing the variant, 
summed across the maternally- and paternally-inherited LPA alleles—using the formula: 

diploid	PSV	copy	number =
#	ALT	reads

#	ALT	reads + #	REF	reads ⋅ (diploid	KIV-2	copy	number) 

where diploid KIV-2 copy number had been estimated according to the genotyping and phasing 
algorithm described above. Intuitively, this formula allocates the estimated total number of KIV-
2 repeats across those carrying the reference vs. non-reference allele at the site in question 
according to the ratio of the numbers of reads observed. PSV copy number estimates obtained in 
this way were sometimes downward-biased by capture bias or mapping bias favoring the 
reference allele, but such biases could be corrected in downstream analysis. 

Phasing and imputing PSV genotypes 

Analysis of KIV-2 PSVs using exome-sequencing data from UK Biobank was particularly 
technically challenging because the off-target capture of exon 2 and type-A versions of exon 1 
(due to the exclusion of these exons from the IDT xGen v1 panel) resulted in generation of only 
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~1 read per repeat unit at some sites, such that our estimates of diploid PSV copy number tended 
to be very noisy. Fortunately, the large size of the UKB cohort (49,959 exome-sequenced 
participants) enabled us to employ haplotype-sharing analysis to simultaneously phase-resolve 
and refine PSV copy number estimates: intuitively, PSV measurements from individuals who 
shared long haplotypes (and therefore were likely to share LPA alleles) could be analyzed 
together to help inform estimates of one another’s genotypes. 

For 80 common and low-frequency PSVs, the same phasing algorithm that we had applied to 
VNTRs also accurately phased and imputed PSV genotypes (mean	𝑅!-	= 0.91 for phasing and 
0.88 for imputation). 

Rarer PSVs could not be phased using the same algorithm because it relied on measures of 
concordance of copy number estimates in IBD2 sib-pairs and in pseudo-trios to perform 
parameter estimation, such that if none of the 133 sib-pairs we determined to be IBD2 at LPA 
carried a rare PSV, then the parameter optimization routine broke down. We therefore 
implemented a separate pipeline that we applied to phase 85 rare PSVs estimated to have 2 to 
400 carriers among the exome-sequenced participants. This pipeline analyzed each such PSV as 
follows: 

• Identify any individual with at least 1 read carrying the ALT allele as a potential carrier. 
• For each potential carrier: 

o For each of the individual’s two haplotypes, count the number of other potential 
carriers among the 200 haplotypes sharing longest IBS (at LPA). 

o Call the individual as a homozygous carrier if both haplotypes share long IBS 
with several other potential carriers (total carrier count >10 across 2 x 200 
“haplotype neighbors” of the two haplotypes, with reasonably balanced counts 
from each neighbor, i.e., <5:1 imbalance). 

o Otherwise, call the individual as a heterozygous carrier as long as one haplotype 
shares long IBS strictly more potential carriers than the other; if so, assign the 
PSV to the haplotype with more potential carriers among its IBS neighbors. 

After using the above pipeline to phase the 85 rare PSVs in exome-sequenced individuals, we 
then imputed them into the remainder of the UK Biobank cohort using Minimac4 (63) (treating 
these rare PSVs as biallelic). 

Optimizing genotyping of common and low-frequency PSVs with large effects on Lp(a) 

An initial round of association and fine-mapping analysis using phased and imputed PSV 
genotypes from the pipelines above identified five common and low-frequency PSVs that 
appeared to greatly (or entirely) reduce Lp(a), including the four previously-reported variants as 
well as a new Tyr>Asp (Y>D) missense variant in exon 1 with MAF=0.3% in European alleles 
that appeared to produce an Lp(a)-null allele. Given the large effects of these variants and their 
influence on Lp(a) levels in a sizable fraction of the cohort, we further optimized our genotyping 
of these five variants to ensure accurate fine-mapping of rarer variants. 
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We implemented two optimizations within the copy number estimation framework described 
above, both aimed at increasing the fidelity of initial genotype estimates that were often based on 
very few reads supporting the ALT allele. First, we applied stringent filters on base qualities and 
within-read positions (e.g., dropping the last base of each read) that we manually optimized for 
each of the five PSVs by using samtools (77) mpileup to examine distributions of these 
parameters among ALT base calls from confident carriers (with multiple reads containing the 
ALT base) vs. potential non-carriers (with only one ALT read). Second, we identified and 
dropped potential duplicate reads that had not been filtered by standard duplicate read analysis 
(which checks for pairs of paired-end reads that map to exactly the same pair of positions) 
because multi-mapping reads generated from the KIV-2 region had been randomly mapped to 
one of the paralogous KIV-2 repeats in GRCh38. 

Our cross-validation benchmarks within our phasing and imputation pipeline indicated that the 
optimized copy number estimates of all five of these PSVs imputed accurately (𝑅!- > 0.75). 
Phased allelic copy numbers of the two most common non-LoF splice-altering mutations 
(MAF=20% and MAF=13% in Europeans) were sufficiently accurate to identify rarer alleles 
likely to carry the PSV on two KIV-2 repeats (CN=2; MAF~1%) or three KIV-2 repeats (CN=3; 
MAF~0.2%; Fig. S12).  



 
 

41 
 

7  Fine-mapping associations of LPA variants with lipoprotein(a) 
 
KIV-2 size variation alone explains roughly half of population variation in Lp(a) levels, such that 
remaining variation in Lp(a) among individuals is largely explained by other sequence variants 
in LPA (that affect Lp(a) levels together with KIV-2 size) (12). Previous studies have identified 
several coding and splice variants in LPA that create null alleles (58, 91–95) (producing no 
detectable serum Lp(a)), and a few other coding or splice region variants have been observed to 
associate with substantially reduced Lp(a) (with less certain causality) (57, 85, 96). Additionally, 
two variants in the 5’ UTR of LPA have been observed to associate with more moderate changes 
in Lp(a) with support from in vitro (reporter assay) analyses of translational activity (21, 22). 
However, a comprehensive list of the LPA variants that influence Lp(a) levels in most 
individuals has remained elusive (as has strong statistical evidence for causality of the variants 
mentioned above, aside from protein-truncating variants) because of the challenges of 
genotyping KIV-2 variation and accounting for nonlinear effects on Lp(a). 

To comprehensively fine-map LPA variant associations to variants likely to causally influence 
Lp(a) levels, we performed a stepwise conditional analysis using a sequence of statistical tests 
tailored to iteratively identify likely-causal variants with different characteristics (detailed in the 
following paragraphs) and condition on these variants in subsequent steps.  In Table S4, we list 
each of the 17 steps of this analysis, the likely-causal variant(s) identified, the statistical test 
performed, the number of alleles tested, the association statistic of the putative causal variant(s), 
and a description of the association statistics of other LPA variants.  At each step of the analysis, 
we performed an association test for all 37,208 variants within 1Mb of LPA for which we could 
obtain or impute genotype information, including: 

• SNPs and indels directly genotyped on the UK Biobank SNP-arrays; 
• SNPs that we re-imputed (to obtain phased genotype estimates) from the Haplotype 

Reference Consortium panel r1.1 into the UKB cohort using Minimac4 (63) v1.0.1; 
• SNPs and indels that we previously imputed from the WES cohort into the remainder of 

the UKB cohort (10); and 
• SNP and indel PSVs in the KIV-2 region that we ascertained and genotyped from exome-

sequencing read alignments and imputed into the rest of the UKB cohort (as described in 
the previous note). 

We performed stepwise association analyses on subsets of the 337,466 stringently-filtered White 
British, unrelated UKB participants in all steps except Step 16, in which we analyzed exome-
sequenced participants of self-reported African-ancestry (N=893). 

At each step of this analysis, we tested for association of a variant on one haplotype controlling 
for the lipoprotein(a) contributed by the allele on the opposite haplotype (on the homologous 
chromosome) and controlling for the effects of variants discovered in prior steps.  In the initial 
steps (Stage 1; Steps 1-12), we required the allele on the opposite, homologous chromosome to 
carry a previously identified null allele (carrying rs41272114 or rs41259144 (combined 
European MAF=0.049), both of which are known to create alleles that produce no detectable 



 
 

42 
 

serum Lp(a) (93, 95)), allowing us to perform association analyses within an effective haploid 
model of Lp(a).  To increase power to detect effects of rarer variants (Stage 2; Step 13) and 
variants with weaker effects (Stage 3; Steps 14, 15, and 17), we then expanded our analysis to 
allow the allele on the opposite, homologous chromosome to carry any of the variants identified 
in Steps 1-12 whose carriers appeared to produce low Lp(a); this criterion was satisfied for 30% 
of all alleles (see legend of Table S4 for precise definition).  For variant discovery in African-
ancestry samples (Stage 3; Step 16), we placed no restriction on the homologous alleles, and 
instead modeled Lp(a) from KIV-2 length (non-parametrically) and the variants discovered in the 
prior steps of analysis as described below. 

At each step, we removed alleles carrying large-effect variants discovered in prior steps (except 
at Step 17, where we specifically restricted to carriers of KIV-2.2 +0G>A (G4925A) to search 
for sub-haplotypes carrying causal variants).  We modeled the effects of small-effect common 
variants identified in prior steps by including them as covariates in linear regression association 
tests on log(Lp(a)) (Stage 3; Steps 15-17). 

Our stepwise analysis targeted variants in three stages: 

Stage 1, Steps 1-12: Large-effect, common and low-frequency variants.  We first sought to 
identify large-effect variants that drastically reduced Lp(a) despite occurring on alleles with short 
or medium KIV-2 lengths (that would usually be expected to produce moderate-to-high levels of 
Lp(a)).  We performed Fisher’s exact tests on variants for a binarized Lp(a) phenotype (low vs. 
high), restricting to alleles opposite null alleles (see above) and whose KIV-2 lengths were 
restricted to a particular range.  The Lp(a) cutoff and maximum KIV-2 length varied between 
steps (Table S4). 

In 12 consecutive steps of analysis, this procedure identified 12 variants each of which was 
predicted to be protein-altering and achieved the top association statistic in a step of analysis.  
The variants identified in the first two steps were noteworthy both for their high allele 
frequencies (European MAF=13% and 20%, respectively) and their genomic locations, which 
were within the KIV-2 repeat on either end of KIV-2 exon 2 (Table S4).  The first variant alters 
the final base of KIV-2 exon 2 and was recently demonstrated to impair splicing at the adjacent 
splice acceptor site (20).  The second variant is in the splice region preceding KIV-2 exon 2 and 
was recently identified and observed to associate with reduced Lp(a) (85) (P=0.0052 in N=23 
carriers).  Our analysis provided strong statistical evidence of the causality of this association, 
and we further observed that this variant was computationally predicted to impair splicing of the 
nearby splice donor site (SpliceAI (19) donor loss Δ score = 0.79). 

Interestingly, the computational prediction indicated that the KIV-2 exon 2 -11G>A variant 
might either simply impair the splice donor site or also create a cryptic splice donor 9bp 
upstream (causing an inframe insertion introducing an IleSerSer amino acid sequence).  To 
determine if this PSV created an alternative splice site, we examined RNA-seq reads from the 
GTEx project (97) (v8), across all donors and tissues, to look for any reads showing evidence of 
the use of a different splice site at the location of the PSV, but we found no evidence that the 
PSV created an alternative splice site, suggesting that it simply impairs the canonical splice 
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donor site.  (The Genotype-Tissue Expression (GTEx) Project was supported by the Common 
Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, 
NHLBI, NIDA, NIMH, and NINDS.  The data used for the analyses described above were 
obtained from the AnVIL GTEx portal for GTEx v8 on 01/07/21.) 

Stage 2, Step 13: Rare variants producing potential null alleles.  Next, we sought rare variants 
likely to create additional null alleles (producing undetectable Lp(a)).  To do so, we performed 
Fisher’s exact tests against Lp(a) binarized at the lower limit of the reportable range (3.8 
nmol/L), restricting association analysis to alleles opposite the 30% of alleles expected to 
produce low Lp(a) based on Steps 1-12 (see above).  We considered only variants that 
approximately matched the profile of known null alleles in terms of the frequency of Lp(a) 
measurements below the reportable range (<3.8 nmol/L) in this setup.  (More precisely, 85% of 
Lp(a) measurements were below 3.8 nmol/L among null allele carriers for which the opposite, 
homologous allele was expected to produce low Lp(a), so we only considered variants for which 
the 95% CI of this frequency overlapped 0.85)  This analysis identified 11 rare variants with top 
associations, of which five variants (four protein-altering and one in the 5’ UTR of LPA) 
appeared likely to be causal.  Two additional variants were in LD with the protein-altering 
variants and one variant was in LD with the 5’ UTR variant.  The remaining three variants were 
>100kb away from LPA and we were unable to identify plausible causal variants underlying 
these associations (Table S4). 

Stage 3, Steps 14-17: Moderate-effect, common variants.  After excluding alleles carrying large-
effect variants (Steps 1-13), we sought to identify common variants with smaller effects on 
Lp(a).  In Steps 14 and 15, we restricted to alleles with KIV-2 length in the interval 11 to 18 
opposite alleles expected to produce low Lp(a).  Among these alleles, the relationship between 
KIV-2 length and log(Lp(a)) appeared to be linear.  We therefore ran linear regression analyses 
to test log(Lp(a)) for variant associations including KIV-2 length and KIV-2 length squared as 
covariates.  These analyses identified two additional variants, one in the 5’ UTR (with prior 
support from in vitro studies (22)) and a missense SNP, both of which appeared to exert a 
moderate and consistent influence on Lp(a) across the KIV-2 spectrum.   

We next ran a similar analysis using data from African-ancestry participants, hoping to identify 
additional Lp(a)-modifying variants that may be less common among Europeans.  To maximize 
power, we created an interim model for Lp(a), fit using measurements in Europeans, so we could 
use data from all exome-sequenced participants of African-ancestry (and place no restriction on 
the opposite allele).  We first estimated the contribution of a “clean” allele (i.e., one without any 
previously identified large effect variant) to Lp(a) by averaging Lp(a) measurements for all 
(European and exome-sequenced) individuals with a clean allele of similar KIV-2 length (within 
3 repeat units) whose opposite allele carried a null variant (rs41272114 or rs41259144).  We then 
estimated multiplicative factors for Lp(a)-modifying variants by linear regression on log(Lp(a)) – 
log(Lp(a) estimated from KIV-2 length). Finally, we computed Lp(a) predictions in African-
ancestry participants as the sum of the contributions of the two alleles.  In Step 16, we ran linear 
regression analyses on log(measured Lp(a)) – log(predicted Lp(a)), identifying an additional 5’ 
UTR SNP (also with prior support from in vitro studies (21, 22)).  Minor allele carriers of this 
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SNP appeared to have modestly increased Lp(a) across the KIV-2 spectrum in both Africans and 
Europeans (Fig. 1A). 

Finally, in Step 17, we performed an analysis similar to Steps 14 and 15 among carriers of the 
splice modifier variant KIV-2.2 +0G>A (G4925A) and identified a missense SNP (mostly 
contained on alleles carrying the splice modifier variant) that appeared to reduce Lp(a) (Fig. 
S12). 

The variants identified by this multi-stage analysis account for almost all (>97%) of the short and 
medium European LPA alleles (<19 KIV-2 repeat units) that produce small amounts of serum 
lipoprotein(a) (<6 nmol/L when opposite null alleles carrying rs41272114 or rs41259144).  This 
list of variants appears to be comprehensive of all large-effect, Lp(a)-reducing variants 
polymorphic in Europeans except those that are very rare.  We expect that additional low-
frequency and rare null alleles remain to be found in other populations.  
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8  Predictive model of Lp(a) from KIV-2 and fine-mapped LPA coding and 5’ 
UTR variants 
 
We modeled lipoprotein(a) concentration as the sum of the contributions of maternally- and 
paternally-inherited LPA alleles consisting of phased KIV-2 lengths and SNP haplotypes for the 
coding and UTR SNPs identified by our fine-mapping pipeline (Table S4): 

Lp(a) = 𝑓(KIV21B#, SNPs1B#) + 𝑓JKIV2%B#, SNPs%B#L. 

We did not include other variables in our predictive model because genetic variation at LPA 
explained the vast majority of Lp(a) variance (>80%), whereas other covariates explained very 
small amounts of variance (e.g., sex (0.2%), age (0.1%), and other loci in the genome (<0.1%)). 

The contribution of each (haploid) LPA allele appeared to be well-modeled as a “baseline” 
function of KIV-2 length alone, on top of which coding and UTR SNPs on the same haplotype 
act via multiplicative factors (Fig. 1A). As such, we modeled each haplotype’s contribution as: 

𝑓JKIV2CB%, SNPsCB%L = 𝑓DBA'@,-'JKIV2CB%L	 � 𝑐EFG
EFGA	H,#C	IJK
B@@'@'	$-	CB%

 

where 𝑐EFG denotes a constant factor indicating the magnitude of the effect of each Lp(a)-
modifying SNP that our fine-mapping pipeline identified (Table S4). 

Empirically, the baseline curve 𝑓DBA'@,-'JKIV2CB%L appeared to have two key properties: (i) an 
exponential decay that governs the relationship between KIV-2 length and Lp(a) for medium-
length and longer alleles; and (ii) an inflection point that causes this relationship to break down 
for short alleles, with the shortest alleles apparently contributing less to Lp(a) than less-short 
alleles (Fig. 1A). Property (i) is equivalent to the logarithm of the baseline curve 
log(𝑓DBA'@,-')	having a linear asymptote. To fit these behaviors while avoiding 
overparameterization of the baseline curve, we therefore modeled the logarithm of the baseline 
curve using a conic section (specifically, a hyperbola), which could produce properties (i) and 
(ii) using only five parameters: 

logJ𝑓DBA'@,-'(𝑥)L = 𝑐�(𝑥 − 𝑎)! + 𝑏 + 𝑑𝑥 + 𝑒 

where 𝑥 = KIV2CB%. We adopted this functional form only to approximately capture the 
empirical behavior of the relationship between KIV-2 length and Lp(a) while avoiding 
overfitting; we do not expect that the form itself or its parameters directly correspond to any 
particular feature of the underlying biology. 

Model-fitting 

Our main challenge in fitting the parameters of this model from UK Biobank data was the 
“cropping” of Lp(a) measurements provided by UK Biobank. Specifically, the Randox AU5800 
instruments that UK Biobank used to perform immunoturbidimetric assays measuring Lp(a) had 
a reportable range of 3.8–189 nmol/L. Values of Lp(a) that fell outside this reportable range were 
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indicated “Not reportable at assay (too low)” or “Not reportable at assay (too high)” and were not 
available to researchers at the time of our study. 

To overcome this obstacle, we restricted our model-fitting analyses to a subset of participants 
whose Lp(a) measurements were largely unaffected by the cropping issue based on the 
combinations of LPA alleles they carried. Specifically, we began with the set of 40,589 exome-
sequenced participants who self-reported European ancestry, passed PC-filtering (Materials and 
Methods) and relatedness pruning (which dropped one member of each ≤2nd-degree related pair, 
prioritizing retaining those with Lp(a) measurements), and had not withdrawn from UK Biobank. 
We then fit the coefficients of our haploid model 𝑓JKIV2CB%, SNPsCB%L on the subset of 
haplotypes for which the “opposite haplotype” (i.e., the LPA allele inherited from the other 
parent) was predicted to produce little or no Lp(a) (<2 nmol/L). This criterion essentially isolated 
the effect of one LPA allele, which both reduced noise in Lp(a) measurements and substantially 
ameliorated the issue of Lp(a) measurements exceeding the reportable range (as only ~2% of 
European haplotypes produced >189 nmol/L of Lp(a) on their own, in contrast to ~7% of all 
(diploid) measurements from European-ancestry participants exceeding 189 nmol/L). This 
approach was a slight relaxation of the “effective-haploid” model (considering haplotypes 
opposite an Lp(a)-null allele) that we utilized during fine-mapping; we relaxed the criterion on 
the other haplotype to “predicted Lp(a) <2 nmol/L” to increase sample size (from ~5% of alleles 
opposite an Lp(a)-null allele to ~19% of alleles opposite an allele predicted to contribute <2 
nmol/L to Lp(a)). While this approach incurred the slight inconvenience of needing a predictive 
model of Lp(a) to apply to opposite haplotypes during model-fitting, we overcame this difficulty 
by iteratively fitting the model and updating opposite-haplotype predictions until convergence. 

Within each model-fitting iteration, we fit model parameters in two steps: 

1. Estimate parameters of the baseline curve (5 parameters) and moderate-effect SNPs (3 
multiplicative parameters for the 5’ UTR SNPs rs1800769 and rs1853021 and the 
missense SNP rs3124784). 
 
This step estimated the way in which KIV-2 length and common, moderate-effect SNPs 
determined Lp(a) in the majority of European haplotypes that did not carry a large-effect 
SNP that greatly reduced Lp(a). We fit the 8 parameters in question (5 parameters for the 
𝑓DBA'@,-'JKIV2CB%L curve and 3 parameters for the SNPs) by using Matlab’s fminunc 
optimization routine to minimize squared error between measured Lp(a) (adjusted for the 
small predicted contribution of the opposite haplotype) vs. Lp(a) predicted by the model 
fit, with two additional subtleties. 
 
First, we restricted model-fitting to KIV-2 length ranges that were largely unaffected by 
the cropping of Lp(a) measurements to 3.8–189 nmol/L, adjusting the KIV-2 length range 
according to the alleles of the 3 moderate-effect SNPs. Specifically, for LPA alleles 
carrying the Lp(a)-increasing rs1800769:T minor allele (but not carrying the Lp(a)-
reducing rs3124784:A minor allele), we restricted to KIV-2 in the range [14, 24]; for LPA 
alleles carrying neither of these minor alleles nor the rs1853021:A minor allele, we 
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restricted to KIV-2 in the range [14, 23]; and for all other LPA alleles, we restricted to 
KIV-2 in the range [0, 23]. 
 
Second, for the rare remaining instances in which an allele satisfying the above criteria 
(and opposite an allele predicted to contribute <2 nmol/L to Lp(a)) still produced 
measured Lp(a) exceeding the reportable range, we set “measured Lp(a)” to its posterior 
mean assuming Lp(a) was drawn from a log-normal distribution with 𝜎 = 0.304 (which 
appeared empirically to approximately capture variance in Lp(a) measurements after 
controlling for genetic effects) and with 𝜇 set to match the fraction of Lp(a) 
measurements exceeding the reportable range (among alleles with the same Lp(a)-
modifying SNP haplotypes and with similar KIV-2 lengths, i.e., in the same 2-percentile 
bin of KIV-2 length). 
 

2. Estimate multiplicative parameters for effects of large-effect SNPs. 
 
Most of the large-effect coding SNPs identified by our fine-mapping procedure 
(including all canonical splice site variants and stop gain variants) produced no detectable 
Lp(a) in nearly all individuals who carried an Lp(a)-null allele on the opposite haplotype; 
as such, we set the multiplicative factor 𝑐EFG = 0 for these SNPs. Six large-effect SNPs 
appeared to each reduce Lp(a) by >70% but clearly did not completely abolish Lp(a) 
production: 3 cryptic splice SNPs (two near the exon-intron boundary of KIV-2 exon 2 
and rs41270998) and 3 missense SNPs (rs41267807, rs41267809, and rs76144756). We 
estimated the multiplicative effects of these SNPs by comparing mean measured Lp(a) to 
mean predicted Lp(a) (predicted based on the 8 parameters fit in step 1) in carriers of 
these SNPs with KIV-2 length <16 (restricting to shorter KIV-2 alleles to improve signal-
to-noise in these estimates. 

The parameter values we obtained in this way for the 5 parameters of the baseline curve 
𝑓DBA'@,-'JKIV2CB%L were: 

𝑎 = 10.11, 𝑏 = 30.18, 𝑐 = −0.227, 𝑑 = 	−0.087, 𝑒 = 7.437 

The multiplicative factors 𝑐EFG we estimated for the Lp(a)-modifying SNPs are provided in 
Table S4. 

Predicting Lp(a) 

Given phased KIV-2 lengths and LPA SNP haplotypes for an individual, our model provides a 
prediction of Lp(a) as the sum of predicted contributions of each LPA allele. These genetically-
predicted values of Lp(a) were not subject to cropping to the reportable range of 3.8–189 
nmol/L, offering an opportunity to examine the cardiovascular effects of extremely high Lp(a) 
(e.g., >400 nmol/L). However, for the purpose of assessing the accuracy of our model, we 
needed to compare predicted Lp(a) to measured Lp(a), so in benchmarking analyses we cropped 
predicted Lp(a) (after summing across each individual’s two haplotypes). Stratifying by self-
reported ethnicity among exome-sequenced individuals, we obtained 
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𝑅!Jcropped	pred. Lp(a),measured	Lp(a)L = 0.83	(EUR), 0.61	(SA), 0.54	(AFR), 0.62	(EAS). 

(While model-fitting was performed in a subset of the same European-ancestry participants, 
overfitting is not a concern given the very small number of parameters fit.) The decreased 
prediction accuracy in non-European ancestries likely arises from a combination of unmodeled 
Lp(a)-decreasing variants (with higher non-European allele frequencies) and lower accuracy of 
phased KIV-2 length estimates in the small fraction of non-European UK Biobank participants. 
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9  Effect of within-repeat variation on phenotypes 
 
With the exception of LPA, within-repeat variation appeared to play at most a minor role in the 
VNTR-phenotype associations we identified.  Specifically: 
 

• At LPA, we genotyped within-repeat SNP and indel variation accessible to exome 
sequencing (i.e., in the coding and splice regions of the KIV-2 repeat), and we considered 
these variants at each step of our deep fine-mapping of Lp(a), as described above. We 
found several such variants that appear to strongly reduce Lp(a) (Table S4). 
 

• At ACAN, we determined that copy-number genotypes for the four common repeat types 
explained at most a small amount of additional variance in height (0.354% of height 
variance explained by a joint model including VNTR length, two fine-mapped missense 
SNPs, and repeat-type genotypes vs. 0.338% explained by a model including VNTR 
length and the missense SNPs alone). We were unable to confidently determine how 
much of the additional 0.016% of variance explained was actually due to causal effects of 
the within-repeat variants (vs. SNPs in linkage disequilibrium with repeat-type 
composition), but this analysis indicates that the contribution of any such effects is much 
smaller (by ~20-fold or more) than that of the total VNTR length and the two implicated 
missense SNPs. 
 

• At MUC1, although individual repeat units harbor extensive common variation (35), 
VNTR length appeared to explain nearly the entire association signal at the locus (linear 
regression P=6.2 x 10-153 for the VNTR, which was the variant most strongly associated 
with serum urea, and P > 1 x 10-8 for all SNPs within 500kb of MUC1 upon conditioning 
on VNTR length). Thus, repeat unit variation appears to also play at most a minor role in 
the urea association at MUC1. 
 

• At TCHH and TENT5A, we found no evidence of common variation among repeat units.  
For TCHH, long-read assemblies of 64 unrelated haplotypes generated by the Human 
Genome Structural Variant Consortium (HGSVC2; ref. (14)) contained no such variation.  
For TENT5A, the gnomAD v3.1.1 database (98) contained no common (MAF>1%) 
variants within the VNTR (which is sufficiently short to be spanned by short-read 
sequencing reads). 
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10  Cross-species comparisons of VNTR sequences 
 
We investigated the level of conservation of each of the five VNTRs primarily studied here (in 
LPA, ACAN, TENT5A, MUC1, and TCHH) across nine primates (human, chimp, bonobo, gorilla, 
orangutan, gibbon, rhesus, baboon, and marmoset) and two other mammals (mouse and dog). 
This analysis was based solely on reference genomes for each species. We attempted to map 
each VNTR to each species, and for each VNTR that successfully mapped, we measured its 
length and consensus repeat unit in the reference genome. The results are reported in Table S7 
and summarized below. 
 

• LPA: LPA is known to have originated through duplication of the plasminogen (PLG) 
gene and is found only in primates and old world monkeys (12). Analysis of the repetitive 
exons comprising the kringle domains (including all kringle domains, not just the KIV-2 
domain that is highly polymorphic in humans) found similar assembled kringle domain 
lengths across primate reference sequences. However, the accuracy of reference genome 
assemblies across the KIV-2 region is questionable given the difficulty of assembling 
across such a long repeat; almost no humans have KIV-2 alleles as short as the hg38 
reference (which only contains 6 KIV-2 repeats). 
 

• ACAN: The ACAN consensus sequence is generally well-conserved across mammals. 
Humans appear to have an expansion relative to other primates. Interestingly, mouse 
seems to have an extra codon in the homologous sequence, consistently across all of the 
repeat units. This extra codon is not present in humans and closely related primates, but 
appears in some repeat units in dog (5), marmoset (3), baboon (2), rhesus (2), orangutan 
(1), with the number of extra codons decreasing with decreasing divergence from human. 
 

• TENT5A: The TENT5A VNTR is the most diverged part of the gene. The VNTR 
sequence contains considerable variation not apparent in the amino acid sequence. 
Primates seem to have an expanded number of repeats, with human being somewhat 
shorter than the other great apes. 
 

• MUC1: MUC1 is more diverged than the previous VNTRs, with apparent errors in the 
gene annotations for several reference genomes. We therefore restricted analysis of the 
MUC1 VNTR to eight primates for which the VNTR appeared to have been assembled 
reasonably accurately. Human is greatly expanded compared to other primates, consistent 
with previous work (2), although gorilla and marmoset are also both longer than other 
primates. 
 

• TCHH: The TCHH protein is highly diverged among primates, especially in certain 
domains, including the VNTR. The gene is also quite repetitive, with multiple domains 
similar to the VNTR region we studied. As a result, we were unable to reliably identify 
clearly homologous sequences for the short (18bp, 6 amino acid) VNTR in TCHH across 
primates. This high divergence is consistent with our observation that the 18bp VNTR 
appears to be hypermutable in humans (exhibiting somewhat lower phasing and 
imputation accuracy despite being accurately genotyped from exome sequencing read-
depth).  
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Supplementary Figures 
 
 
 
 
 

 
 
 
Fig. S1.  Exonic VNTRs create large-scale size polymorphisms of protein domains.  VNTR 
alleles of varying lengths are depicted for four VNTRs (within ACAN, TENT5A, MUC1, and 
TCHH) for which we identified large-effect phenotype associations with strong implication of 
the VNTR by fine-mapping analysis.  Gene diagrams indicate the position of the VNTR on the 
GRCh38 reference; callouts show examples of expanded and contracted alleles (the longest and 
shortest common (>1% AF) alleles identified among UKB participants of European ancestry). 
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a  ß Direction of transcription 
     Human reference coordinates à 
 Intron position 

(… +1) 
KIV-2 exon 1 position 

(160 … 1; minus strand) 
Intron position 

(-1 …) 
Repeat 
Type 

+119 86 41 14 -16 -17 -23 -26 

A T (A1) 
C (A2) 

T A T G G C T 

B  A G C A A - A 
C  T G C     
 PSV 

distinguishing 
A1/A2 subtypes 

Synonymous PSVs within KIV-2 exon 1 
distinguishing A/B/C repeat types 

Additional intronic PSVs 
distinguishing A/B 

(C sequence not in ref) 
 
 
 

b 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S2.  Genotyping LPA VNTR repeat subtypes.  a, Repeats within the LPA VNTR have 
previously been classified into three repeat types (A, B, C) based on sequence variation at three 
synonymous paralogous sequence variants (PSVs) within KIV-2 exon 1.  A nearby PSV located 
119bp into the downstream intron further subdivides repeat type A into two common subtypes, 
which we called A1 and A2.  We separately estimated allelic copy numbers for repeat types A1, 
A2, and B by counting sequencing reads that mapped uniquely to one of these three repeat 
sequences.  (We did not specially treat repeat type C, which only comprises ~1% of all repeats 
(85); reads generated from type-C repeats therefore contributed to a mixture of the other repeat 
type counts depending on which PSVs they spanned, which determined whether they aligned 
best to repeat A1, A2, or B.)  b, Separately genotyping and phasing each repeat type produced 
multimodal copy number distributions with some haplotypes carrying large expansions of repeat 
types A2 and B.  The distribution of type-B repeat copy number estimates exhibited clear near-
integer modes.  Allele distributions for N=34,418 exome-sequenced, unrelated British UKB 
participants are shown. 
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a 
 

Repeat type Repeat unit nucleotide sequence Amino acid sequence 
1 GGGCTTCCTTCTGGAGAAGTTCTAGAGACCACTGCCCCTGGAGTAGAGGACATCAGC   GLPSGEVLETTAPGVEDIS 

2 GGGCTTCCTTCTGGAGAAGTTCTAGAGACCGCTGCCCCTGGAGTAGAGGACATCAGC   GLPSGEVLETAAPGVEDIS 

3 GGGCTTCCTTCTGGAGAAGTTCTAGAGACTGCTGCCCCTGGAGTAGAGGACATCAGC   GLPSGEVLETAAPGVEDIS 

4   00x 
4   01x 
4   1x0 
4   1x1 

GGGCTTCCTTCTGGAGAAGTTCTAGAGACTACTGCCCCTGGAGTAGAGGACATCAGC 
GGGCTTCCTTCTGGAGAAGTTCTAGAGACTACTGCCCCTGGAGTAGAGGAGATCAGC 
GGGCTTCCTTCTGGAGAAGTTCTAGAGACTACTGCCCCTGGAGTAGATGAGATCAGC 
GGGCTTCCTTCTGGAGAAGTTCTAGAGACTACTGCCCCTGGAGTAGATGAGATCAGT   

GLPSGEVLETTAPGVEDIS 
GLPSGEVLETTAPGVEEIS 
GLPSGEVLETTAPGVDEIS 
GLPSGEVLETTAPGVDEIS 

E GGGCTTCCTTCTGGAGAAGTTCTAGAGACTTCTACCTCTGCGGTAGGGGACCTCAGT                              GLPSGEVLETSTSAVGDLS 

                              **                *  *     * 
                       2 variants in           3 variants 
                    “diagnostic codons”       distinguish 
                      -> types 1-4         repeat 4 types 

 

 
 
Fig. S3.  Genotyping ACAN VNTR repeat subtypes.  a, Repeats within the ACAN VNTR can 
be broadly classified into four repeat types according to sequence variation at two consecutive 
“diagnostic” base pairs (29).  The fourth repeat type can be further subdivided based on three 
additional paralogous sequence variants (PSVs).  The final, partially-diverged repeat unit 
(“repeat E”) of the ACAN VNTR is lost in a few rare alleles, creating unique sequence that we 
identified directly from exome sequencing reads.  b, Separately genotyping and phasing each 
repeat type based on counts of sequencing reads containing the corresponding PSVs enabled 
accurate, integer-mode estimates of repeat type counts within ACAN VNTR alleles.  Allele 
distributions among N=46,472 exome-sequenced UKB participants of European ancestry are 
shown.  
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Fig. S4.  Benchmarks of VNTR genotyping and imputation accuracy.  a, Consistency of 
diploid VNTR length estimates (before phasing, which simultaneously refined allele length 
estimates) between pairs of siblings sharing both VNTR alleles (i.e., IBD2).  Reported values do 
not exactly match Table S1 because these analyses used optimized VNTR genotypes (whereas 
Table S1 reports metrics from our initial genotyping pipeline).  Counterintuitively, correcting for 
exome capture bias at ACAN decreased IBD2-sib correlation because the variance in the original 
(biased) length estimates was larger than the variance in the corrected length estimates, such that 
the biased estimates appeared to be more consistent across IBD2 sibs (since the contributions of 
particular repeat subtypes were consistently over- or underestimated).  b, Consistency of VNTR 
lengths estimated from exome sequencing vs. whole-genome sequencing (available from a pilot 
WGS analysis of N=48 UK Biobank participants, of which 6 had been exome-sequenced; 
imputed VNTR allele length estimates are plotted for the remaining 42 participants).  WGS data 
enabled accurate diploid VNTR length estimation at LPA and MUC1 (which have high allele 
length variance) and at TENT5A (because all alleles were spanned by 151bp sequencing reads).  
ACAN and TCHH allele lengths could not be accurately estimated from WGS. 
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Fig. S5.  Validation of WGS- and imputed WES-based LPA KIV-2 copy number estimates 
using Bionano optical mapping data in HGSVC2.  a, KIV-2 copy number estimated from 30x 
WGS of 1000 Genomes samples with available Bionano data.  b, KIV-2 copy number imputed 
from the N~50K UKB WES cohort, with KIV-2 copy numbers estimated using our optimized 
genotyping procedure.  Because Bionano structural variant calls were unphased, both plots 
compare “diploid copy number” (i.e., KIV-2 copy numbers summed across each individual’s two 
haplotypes) in N=28 unrelated individuals for whom both Bionano data and 30x WGS data were 
available.  Bionano and 30x WGS-based estimates were highly concordant (R=0.99 considering 
all N=28 individuals), indicating high accuracy of both measurement techniques.  Imputed WES-
based estimates were highly concordant with Bionano across the 5 EUR samples (solid blue 
dots); accuracy across the full set of N=28 samples was somewhat lower (R=0.82), as expected 
given the difficulty of imputing from UK Biobank into non-European populations.  
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Fig. S6.  Validation of WES-based LPA KIV-2 copy number estimates (imputed from UKB) 
against WGS-based estimates in the 1000 Genomes 30x WGS data set (N=3,202).  Panels are 
stratified by super-population: a, EUR; b, SAS; c, AFR; d, EAS; e, AMR.  The WGS-based 
estimates are expected to be nearly exact based on near-perfect concordance with Bionano 
optical mapping data (R=0.99; Fig. S5 above).  These comparisons indicate high accuracy of 
imputed WES-based KIV-2 copy number estimates in populations of northwest European 
ancestry (R=0.96 for CEU, R=0.94 for GBR) well-matched to the UKB reference panel, with 
diminishing accuracy for less-closely-related populations.  
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Fig. S7.  Validation of WES-based ACAN VNTR copy number estimates (imputed from 
UKB) using haploid genome assemblies from HGSVC2 (N=64 haplotypes).  a, Total ACAN 
VNTR copy number across all repeat types; b-e, copy numbers of repeat types 1-4.  ACAN 
VNTR allele lengths were accurately imputed from UKB WES in all 1000 Genomes populations.  
One EUR haplotype is an outlier (blue circle at right of panel a): the paternally-inherited 
haplotype of NA12329 (CEU) inherited from NA06984 was imputed as a ~27-allele but appears 
to actually be a 32-allele based on long-read data and confirmatory evidence from 30x WGS.  
This haplotype appears to be poorly represented in UKB; the closest-matching haplotype in the 
N=50K WES cohort shared IBS for only ~0.1 cM on either side of the VNTR.  
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Fig. S8.  Validation of WES-based MUC1 VNTR copy number estimates (imputed from 
UKB) using PacBio CLR spanning reads from HGSVC2.  Haplotype-resolved MUC1 VNTR 
allele lengths were determined by reanalysis of PacBio CLR long-read data (Supplementary Text 
5).  Plotted data points are for N=54 haplotypes from N=27 unrelated individuals for whom both 
CLR and 30x WGS data were available).  MUC1 VNTR allele lengths were accurately imputed 
from UKB WES in all 1000 Genomes populations (R=0.94 considering all N=54 haplotypes).  
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Fig. S9.  Validation of WES-based TCHH VNTR copy number estimates (imputed from 
UKB) using haploid genome assemblies from HGSVC2 (N=64 haplotypes).  The length of 
the 18bp repeat in TCHH was imputed quite accurately into 1000 Genomes EUR samples, 
whereas accuracy was lower in other populations (R=0.72 considering all N=64 haplotypes), as 
expected based on the apparent hypermutability of this repeat.  The same EUR haplotype that 
was an outlier for ACAN is again an outlier here (blue dot at right): the paternally-inherited 
haplotype of NA12329 (CEU) inherited from NA06984 was imputed as an ~8-allele but appears 
to actually be a 14-allele based on the long-read assembly.  This haplotype may have ancestry 
not well-represented in UKB.   
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Fig. S10.  An effective-haploid model of Lp(a) created by carriers of null-Lp(a) alleles 
isolates contributions of individual LPA alleles.  a, Scatter plot of Lp(a) vs. estimated kringle 
IV-2 length (of one allele) in exome-sequenced UK Biobank participants.  The relationship 
between KIV-2 length and Lp(a) is blurred by the contribution of the LPA allele on the 
“opposite” chromosome (i.e., the homologous chromosome inherited from the other parent).  b, 
Scatter plot of Lp(a) vs. KIV-2 length restricted to N=3,343 alleles for which the opposite 
haplotype carries a low-frequency variant known to produce a null-Lp(a) allele (rs41272114 (93) 
or rs41259144 (95)).  In both panels, alleles are drawn from exome-sequenced, unrelated, British 
UKB participants; in panel a, alleles are down-sampled to match the count in panel b. 
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Fig. S11.  Lp(a)-reducing effects of 12 LPA coding or splice variants.  Scatter plots of Lp(a) 
vs. KIV-2 length, with carriers of a single Lp(a)-modifying variant identified in one of the first 
12 steps of conditional fine-mapping analyses (Table S4) highlighted in each panel.  Points in 
each panel correspond to LPA alleles in N=24,969 exome-sequenced UKB participants of 
European ancestry for which the allele on the homologous chromosome was predicted to 
produce little or no Lp(a) (i.e., <4 nmol/L). 
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Fig. S12.  Epistatic effects of splice modifier variant KIV-2.2 +0G>A (G4925A) dosage, 
KIV-2 length, and LPA missense SNP rs76144756 on Lp(a).  a, Distribution (across N=68,836 
European LPA alleles) of the estimated number of KIV-2 repeats carrying a common splice 
variant in the last base pair of KIV-2 exon 2 that impairs splicing at the adjacent splice junction 
(G4925A in the nomenclature of ref. (20)).  b, Lp(a) vs. KIV-2 length for alleles in a near-
haploid model as in Fig. 2a, with color indicating KIV-2.2 +0G>A dosage and rs76144756 
status.  Alleles carrying a single copy of the +0G>A splice variant exhibit substantially reduced 
Lp(a); alleles that additionally carry either another copy of the splice variant (on an additional 
KIV-2 repeat within the same allele) or the missense SNP rs76144756 exhibit further reduction 
in Lp(a).  The inverse relationship between KIV-2 length and Lp(a) is still evident among alleles 
with impaired splicing due to carrying one copy of the KIV-2.2 +0G>A splice variant: large 
markers indicate mean Lp(a) among such alleles carrying the reference allele of rs76144756, 
binned by KIV-2 length (error bars, 95% CIs). 
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Fig. S13.  The relationship between Lp(a) and KIV-2 copy number appears to invert at the 
short end of the KIV-2 allele length spectrum.  Top, Frequency of Lp(a) measurements 
exceeding the reportable range (>189 nmol/L) as a function of KIV-2 length for short (≤16 
repeat units) alleles in exome-sequenced, unrelated European individuals.  This analysis was 
restricted to N=8,939 alleles for which (i) the haplotype carrying the allele did not carry any 
large-effect Lp(a)-reducing variants, and (ii) the allele on the homologous chromosome was 
predicted to produce relatively low levels of Lp(a) (<40 nmol/L).  Error bars, 95% CIs (Wilson 
score interval for binomial proportion).  Bottom, Lp(a) vs. KIV-2 length scatter plot for alleles 
considered in the top panel, with the shaded region indicating the 20th-50th percentiles of Lp(a) 
(in bins of KIV-2 length).  Lp(a) measurements that did not exceed the reportable range (<189 
nmol/L) were adjusted for predicted Lp(a) produced by the opposite haplotype.  
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Fig. S14.  Allele frequency differences in KIV-2 VNTR length and LPA coding and 5’ UTR 
SNPs explain cross-population differences in the relationship between KIV-2 length and 
Lp(a).  Top, Measured Lp(a) vs. KIV-2 allele length (of one haplotype) in exome-sequenced 
UKB participants of self-reported European ancestry (left; N=46,472), African ancestry (middle; 
N=1,008), and East Asian ancestry (right; N=173).  Mean Lp(a) across KIV-2 length bins is 
shown in black (error bars, 95% CIs). Bottom, Same as in top panel but with measured Lp(a) 
residualized by genetically predicted Lp(a).  The genetic architecture of Lp(a) appears to be 
consistent across populations, with predictions (based on the model we fit using European-
ancestry samples) accounting for the KIV-2 length association in all populations. 
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Fig. S15.  Individuals with type 2 diabetes exhibit reduced Lp(a) across the range of 
genetically predicted Lp(a). Log-log plot of measured Lp(a) vs. genetically predicted Lp(a), 
stratified by type 2 diabetes (T2D) status, in N= 311,854 unrelated, British UKB participants.  
Means are plotted for bins of predicted Lp(a); error bars, 95% CIs.  The reportable range of 
Lp(a) measurements was 3.8-189 nmol/L (horizontal lines), such that the cropping of reported 
measurements to this range tended to caused bias toward the mean in Lp(a) measurements of 
individuals with very low or very high Lp(a). 
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Fig. S16.  Replication of association between ACAN VNTR length and height in African-
ancestry individuals by summary-statistic imputation.  Height association P-values at the 
ACAN locus are displayed for SNPs analyzed by AAAGC (N=41,399) (27) and for the ACAN 
VNTR (for which strength of association with height was imputed into AAAGC via modeling of 
linkage disequilibrium with nearby SNPs).  Variants exhibiting non-negligible LD with the 
VNTR (R2>0.01) are colored by the amount of linkage, and the strength of the top SNP 
association genome-wide is indicated by the dashed line. 
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Fig. S17.  Incomplete dominance in the association of MUC1 VNTR length with serum 
urea.  a, Serum urea vs. MUC1 VNTR length, stratified by length of the VNTR allele on the 
homologous chromosome, in N=415,280 unrelated UKB participants of European ancestry. Plot 
markers indicate mean urea for alleles binned by MUC1 VNTR length; least-squares linear fit 
(solid) also shown.  b, Serum urate vs. MUC1 VNTR length, stratified and plotted as in panel a.  
Error bars, 95% CIs.  We formally tested for a dominance effect using linear regression in which 
we included an interaction term (the product of maternally- and paternally-derived allele lengths) 
in addition to summed allele lengths, age, age squared, sex, and 20 PCs, obtaining P=2.3 x 10-20 
for urea and P=0.56 for urate. 
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