In the format provided by the authors and unedited.

# Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations 

Po-Ru Loh ${ }^{1,2,14 *}$, Giulio Genovese ${ }^{2,3,4,14 *}$, Robert E. Handsaker ${ }^{2,3,4}$, Hilary K. Finucane ${ }^{2,5}$, Yakir A. Reshef ${ }^{6}$, Pier Francesco Palamara ${ }^{7}$, Brenda M. Birmann ${ }^{8}$, Michael E. Talkowski ${ }^{2,3,9,10}$, Samuel F. Bakhoum ${ }^{11,12}$, Steven A. McCarroll ${ }^{2,3,4,15 *}$ \& Alkes L. Price ${ }^{2,13,15 *}$
${ }^{1}$ Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. ${ }^{2}$ Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ${ }^{3}$ Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ${ }^{4}$ Department of Genetics, Harvard Medical School, Boston, MA, USA. ${ }^{5}$ Schmidt Fellows Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ${ }^{6}$ Department of Computer Science, Harvard University, Cambridge, MA, USA. ${ }^{7}$ Department of Statistics, University of Oxford, Oxford, UK. ${ }^{8}$ Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. ${ }^{9}$ Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ${ }^{10}$ Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ${ }^{11}$ Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ${ }^{12}$ Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. ${ }^{13}$ Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. ${ }^{14}$ These authors contributed equally: Po-Ru Loh, Giulio Genovese. ${ }^{15}$ These authors jointly supervised this work: Steven A McCarroll, Alkes L Price. *e-mail: poruloh@broadinstitute.org; giulio.genovese@gmail.com; mccarroll@genetics.med.harvard.edu; aprice@hsph.harvard.edu

# Supplementary Notes and Tables for "Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations" 

Po-Ru Loh, Giulio Genovese, Robert E Handsaker, Hilary K Finucane, Yakir A Reshef, Pier Francesco Palamara, Brenda M Birmann, Michael E Talkowski, Samuel F Bakhoum, Steven A McCarroll, Alkes L Price

## Contents

Supplementary Notes ..... 3
1 Mosaic chromosomal alteration detection ..... 3
1.1 Computation of LRR and BAF from genotyping intensities ..... 3
1.2 Filtering constitutional segmental duplications ..... 5
1.3 Parameterized hidden Markov model for event detection ..... 7
1.4 Calling existence of an event: likelihood ratio test statistic ..... 8
1.5 Calling event boundaries ..... 9
1.6 Calling copy number ..... 9
1.7 QC filters on anomalous mCA calls ..... 12
1.8 Hidden Markov model for detecting multiple subclonal CNN-LOH events ..... 12
2 Per-chromosome plots of mosaic event calls ..... 14
3 Confirmatory analyses for event calls ..... 38
3.1 Estimation of true false discovery rate ..... 38
3.2 Allelic evidence for validity of 10 q event calls ..... 39
3.3 Replication of distributional results ..... 39
3.4 Replication of GWAS results ..... 40
4 Statistical properties of event calls ..... 42
4.1 Size and clonal fraction distribution of events ..... 42
4.2 Breakpoint resolution of events ..... 46
5 Detection sensitivity using long-range phasing vs. previous approaches ..... 48
5.1 Theoretical comparison of statistical tests ..... 48
5.2 Empirical power comparison ..... 49
6 Analysis of co-occurring mosaic events ..... 52
7 Analysis of focal deletions ..... 53
8 Non-age-related mosaic events in ASDs and the general population ..... 55
8.1 Analysis of del(16p11.2) events ..... 55
8.2 Analysis of del(10q) events and fragile site FRA10B ..... 57
8.2.1 Overview of previous work on FRA1OB ..... 57
8.2.2 Overview of approach to analyzing WGS data ..... 58
8.2.3 Identification of non-reference VNTR motifs in 26 individuals ..... 59
8.2.4 Imputation of VNTRs into UK Biobank ..... 60
8.2.5 Possible models for del(10q) mosaicism ..... 60
9 Analysis of biased $X$ chromosome loss ..... 62
References ..... 64
Supplementary Tables ..... 70

## Supplementary Notes

## 1 Mosaic chromosomal alteration detection

Our procedure for calling mCA is overviewed in Methods; here we provide additional details omitted in Methods for brevity.

### 1.1 Computation of LRR and BAF from genotyping intensities

We converted UK Biobank genotyping intensity data (i.e., A and B allele probe set intensities, $A_{\text {int }}$ and $B_{\text {int }}$ ) into $\log _{2} \mathrm{R}$ ratio (LRR) and B allele frequency (BAF) values [51] using an analysis pipeline similar to Jacobs et al. [1] consisting of the following four steps.

1. For each genotyping batch, for each cluster of called genotypes (AA, AB, BB), compute cluster median in $(X, Y)=($ contrast, size $)$-space [70]:

$$
\begin{align*}
X & =\log _{2} A_{i n t}-\log _{2} B_{i n t}  \tag{1}\\
Y & =\left(\log _{2} A_{\text {int }}+\log _{2} B_{i n t}\right) / 2 \tag{2}
\end{align*}
$$

We computed batch-level cluster centers to account for possible batch effects (given that the UK Biobank genotyping was done in batches of $\approx 4,800$ samples). If a cluster contained fewer than 10 calls, we set its median intensities to missing. For chromosome X, we considered only genotypes of female samples.
2. For each individual, affine-normalize and GC-correct $(X, Y)$ transformed intensities.

This procedure corrects for systematic variation in probe intensities across SNPs for a particular individual (e.g., broadly elevated or reduced intensity levels) as well as for "GC-wave" artifacts [52]. Explicitly, in a manner similar to Jacobs et al. [1], we set up a pair of multivariate linear regressions

$$
\begin{align*}
& X_{m, \exp }=\alpha+X_{m} \beta_{X}+Y_{m} \beta_{Y}+\sum_{k=1}^{9} \sum_{p=1}^{2}\left[\left(f_{m, k}^{\mathrm{GC}}\right)^{p} \cdot \beta_{k, p}^{\mathrm{GC}}+\left(f_{m, k}^{\mathrm{CpG}}\right)^{p} \cdot \beta_{k, p}^{\mathrm{CpG}}\right]  \tag{3}\\
& Y_{m, \exp }=\gamma+X_{m} \delta_{X}+Y_{m} \delta_{Y}+\sum_{k=1}^{9} \sum_{p=1}^{2}\left[\left(f_{m, k}^{\mathrm{GC}}\right)^{p} \cdot \delta_{k, p}^{\mathrm{GC}}+\left(f_{m, k}^{\mathrm{CpG}}\right)^{p} \cdot \delta_{k, p}^{\mathrm{CpG}}\right] \tag{4}
\end{align*}
$$

where $m$ indexes SNPs, $\left(X_{m}, Y_{m}\right)$ are intensity values in (constrast, size)-space for the current individual at SNP $m,\left(X_{m, \exp }, Y_{m, \exp }\right)$ is the cluster center (computed in Step 1) corresponding to the individual's called genotype at $\operatorname{SNP} m$, and $\left\{f_{m, k}^{\mathrm{GC}}, f_{m, k}^{\mathrm{CpG}}\right\}_{k=1}^{9}$ are proportions
of GC and CpG content in 9 windows of $50,100,500,1 \mathrm{k}, 10 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}$, and 1 M bp centered around SNP $m$. We computed GC content using bedtools [71] on the human reference (hg19), and we computed CpG content using the EpiGRAPH CpG annotation [72].

Equations (3) and (4) without the GC and CpG terms amount to an affine transformation of the individual's observed intensity values $\left(X_{m}, Y_{m}\right)$ to best match the "expected" intensity values ( $X_{m, \exp }, Y_{m, \exp }$ ) based on the individual's called genotypes. The GC and CpG terms constitute a polynomial (quadratic) model for artifactual variation due to effects of local GC and CpG content on measured probe intensities [52].

We performed least-squares regression on equations (3) and (4) (ignoring SNPs at which the individual's genotype was uncalled or the relevant cluster center was set to missing) to obtain corrected $(X, Y)$ values, defined as the regression predictions (i.e., $\left(X_{m, \exp }, Y_{m, \exp }\right)$ minus the least-squares residuals).
3. For each genotyping batch, for each cluster of called genotypes (AA, AB, BB), compute means of corrected ( $X, Y$ ) values.

In this step we recomputed cluster centers on the affine-normalized and GC-corrected ( $X, Y$ ) values (taking means rather than medians but otherwise following Step 1).

## 4. For each genotype, transform corrected ( $X, Y$ ) values to LRR and BAF.

Lastly, we transformed corrected ( $X, Y$ ) values using a polar-like transformation followed by linear interpolation in a manner similar to Peiffer et al. [51]. We set

$$
\begin{align*}
\theta & =\frac{2}{\pi} \cdot \arctan \left(2^{X_{A B}-X}\right)  \tag{5}\\
\log _{2} R & =Y \tag{6}
\end{align*}
$$

where in the first equation $X_{A B}$ denotes the mean corrected $X=\log _{2} A_{\text {int }} / B_{\text {int }}$ value for genotypes called as hets at the current SNP. (We filtered out SNPs for which $X_{A B}$ was missing.)

We transformed cluster centers in the same manner to obtain $\left(\theta_{A A}, \log _{2} R_{A A}\right),\left(\theta_{A B}, \log _{2} R_{A B}\right)$, and $\left(\theta_{B B}, \log _{2} R_{B B}\right)$. We then performed linear interpolation between cluster centers [51] in $\left(\theta, \log _{2} R\right)$-space to estimate BAF and expected $\log _{2} R$ for each genotype, from which we obtained LRR as $\log _{2} R-\log _{2} R_{\exp }$. (If one of the cluster centers $\left(\theta_{A A}, \log _{2} R_{A A}\right)$ and $\left(\theta_{B B}, \log _{2} R_{B B}\right)$ was missing, we set it to the reflection of the opposite cluster center across the vertical line $\theta=\theta_{A B}$.)

QC filters on anomalous BAF and LRR. For each sample, we computed s.d.(BAF) within each autosome, and we removed 320 samples with median s.d.(BAF) $>0.11$. We further ignored
chromosomes with mean LRR $>0.3$ (possible non-mosaic trisomy) or mean $\operatorname{LRR}<-0.5$ (possible non-mosaic monosomy).

Masked genomic regions. Following Laurie et al. [2], we excluded genotype measurements in the HLA region on chromosome $6(28,477,797-33,448,354$, build 37$)$ and the X Translocation Region (XTR) on chromosome X (88,575,629-92,308,067).

### 1.2 Filtering constitutional segmental duplications

Before testing for mCAs, we first ran a pre-processing step in which we identified and masked likely constitutional (i.e., inherited) segmental duplications. Constitutional duplications can create false positive detections of mCAs because they have the same effect on BAF and LRR as a somatic gain event at $100 \%$ cell fraction. (Constitutional deletions also behave like somatic loss events at $100 \%$ cell fraction, but because our mCA detection algorithm only uses BAF at heterozygous sites, segmental deletions were not a concern: deletions result in hemizygosity with no heterozygous sites.)

Fortunately, constitutional duplications are relatively easy to filter as they are characteristically short (typically $<1 \mathrm{Mb}$ ) and produce extreme shifts in genotyping intensities: heterozygous sites have AAB or ABB genotypes with $|\Delta \mathrm{BAF}| \sim 0.17$, and all sites have triploid total copy number with LRR~0.36 (Fig. 2a and Fig. S1.2-1). To call and mask such regions, we modeled observed phased BAF deviations (pBAF) across a chromosome using a 25 -state hidden Markov model (HMM) with states corresponding to pBAF values in $[-0.24,+0.24]$ at intervals of 0.02 . We assumed each state emitted a normally distributed observed pBAF with mean equal to the state value and standard deviation equal to the empirical s.d.(BAF) at each site (measured across all individuals within a genotyping batch), capping z-scores at 4 to reduce outlier influence. We allowed transitions between the 0 state and each nonzero state with probability 0.003 (modeling event boundaries) and between each nonzero state and its negative with probability 0.001 (modeling phase switch errors). At the telomeres, we assigned a probability of 0.01 to starting/ending in each nonzero state (to favor calls that end at the telomeres).

We selected regions to mask by computing the Viterbi (maximum likelihood) path through the above HMM and examining contiguous regions of nonzero states. We masked regions of $<2 \mathrm{Mb}$ with $|\Delta \mathrm{BAF}|>0.1$ and $\mathrm{LRR}>0.1$, which we deemed to be likely constitutional duplications, and we further masked gaps (of $<2 \mathrm{Mb}$ ) between nearby regions of this form (assuming that the 1 Mb flanks of the merged region had no apparent mosaicism, i.e., $|\triangle \mathrm{BAF}|<0.05$ ). In total we masked 267,666 likely constitutional duplications among 151,202 individuals. We believe that this procedure filtered out most constitutional duplications of sufficient size to impact our analyses. At the end of our mCA calling pipeline, we performed further QC (Fig. S1.2-1) to eliminate a small minority of uncaught likely constitutional duplications.


Figure S1.2-1. Exclusion of possible constitutional duplications. We filtered events of length $>10 \mathrm{Mb}$ with $\mathrm{LRR}>0.35$ or with $\mathrm{LRR}>0.2$ and $|\Delta \mathrm{BAF}|>0.16$, and we filtered events of length $<10 \mathrm{Mb}$ with $\mathrm{LRR}>0.2$ or with $\mathrm{LRR}>0.1$ and $|\Delta \mathrm{BAF}|>0.1$. Constitutional duplications have expected $|\Delta \mathrm{BAF}|=1 / 6$, corresponding to LRR of roughly 0.36 . The bottom two panels (corresponding to event calls $2-10 \mathrm{Mb}$ and $<2 \mathrm{Mb}$ ) each clearly contain a cluster of calls around $|\Delta \mathrm{BAF}|=1 / 6, \mathrm{LRR}=0.36$. We chose exclusion thresholds to conservatively discard all calls that might belong to this cluster, applying more stringent filtering to shorter events because (i) most constitutional duplications are short and (ii) shorter events have noisier LRR and $|\triangle \mathrm{BAF}|$ estimates.


- Hidden Markov model:
- 1 parameter: $\theta=|\triangle \mathrm{BAF}|$ in mosaic region
-3 states: $\mathrm{E}\left[\right.$ phase $\left.{ }^{*} \Delta \mathrm{BAF}\right]=+\theta, 0,-\theta$
- Detection procedure:
- Compute LRT statistic for testing $\theta \neq 0$
- Calibrate empirically using permutation

Figure S1.3-1. Hidden Markov model for detecting mCAs. Mosaic chromosomal alterations, which alter the balance of maternal vs. paternal chromosome content in a cell population, cause deviations in allelic balance $(|\Delta \mathrm{BAF}|)$ at heterozygous sites. In computationally phased genotyping intensity data, these deviations manifest as stretches of signed deviations with the same absolute value $(\theta)$ but with sign flips at phase switch errors. A three-state Hidden Markov model with the single parameter $\theta$ captures this behavior and enables computation of a likelihood ratio test statistic.

### 1.3 Parameterized hidden Markov model for event detection

The above approach of performing Viterbi decoding on a many-state hidden Markov model works well for finding constitutional duplications, but to define a formal, well-calibrated statistical test sensitive to mCAs at low cell fractions, we took the following more principled approach. We replaced the single 25 -state HMM described above with a family of 3-state HMMs parameterized by a single parameter $\theta$ representing mean $|\triangle \mathrm{BAF}|$ within a mosaic event (i.e., the states of the HMM are $\{-\theta, 0,+\theta\}$; Fig. S1.3-1). The key advantages of this approach are that (i) it naturally produces a likelihood ratio test statistic for testing $\theta \stackrel{?}{=} 0$ (described in the following section); and (ii) the derived test statistic integrates over uncertainty in phase switches and mCA boundaries (unlike maximum likelihood estimation).

Aside from the reduction in the number of states, the 3-state HMM that we used for event detection differs from the 25 -state HMM described above only in values of a few constants. We
reduced the $\pm \theta \rightarrow 0$ "stop" transition probability to $3 \times 10^{-4}$ in autosomes and $1 \times 10^{-4}$ in chromosome X , reflecting the fact that most somatic events of interest span tens of megabases. We reduced the $0 \rightarrow \pm \theta$ "start" transition probability to 0.004 (resp. 0.08 ) times the stop probability in autosomes (resp. chromosome X). (The asymmetry in start vs. stop probabilities reflects the fact that the HMM should not expect to be spend equal amounts of time in the mosaic vs. nonmosaic states; most portions of most chromosomes are expected to be non-mosaic.) We kept the $-\theta \leftrightarrow+\theta$ switch error probability at 0.001 , roughly reflecting our estimated rate of large-scale phase switches [23,24]. We did not assess a probabilistic penalty to starting/ending in nonzero states except in acrocentric chromosomes, for which we reduced the probability of starting in a nonzero state (at the centromere, given that we had no p-arm genotypes) by a factor of 0.2 . As above, we assumed each state emitted a normally distributed observed pBAF; here we capped z -scores at 2 to further reduce outlier influence.

We note that a potential criticism of this 3-state HMM is that it does not properly model chromosomes with multiple mCAs of differing $|\triangle \mathrm{BAF}|$. However, the primary purpose of this model is event discovery (particularly for mCAs at low cell fractions); after we called chromosomes containing events, we performed additional post-processing (described below) to pick up complex mCAs. Additionally, we re-estimated $|\triangle \mathrm{BAF}|$ within mCA boundaries after making event calls.

### 1.4 Calling existence of an event: likelihood ratio test statistic

For a given sequence of phased BAF deviations (denoted $x$ ) on a chromosome, the family of HMMs parameterized by $\theta$ gives rise to a likelihood ratio test statistic as follows. For a given $\theta$, we can compute the likelihood $L(\theta \mid x)$ as the total probability of observing $x$ under the HMM with nonzero states $\pm \theta$. (This computation can be performed efficiently using dynamic programming.) The likelihood ratio for $\theta \stackrel{?}{=} 0$ is then given by

$$
\begin{equation*}
\Lambda(x)=\frac{L(0 \mid x)}{\sup _{\theta}\{L(\theta \mid x)\}} \tag{7}
\end{equation*}
$$

where the numerator is the likelihood under the model in which all states collapse to 0 (i.e., no mCA is present) and the denominator is the likelihood under the best choice of $\theta$. (In practice, we discretized $\theta$ to run from 0.0025 to 0.25 in 40 multiplicative steps.)

Producing a hypothesis test for $\theta \stackrel{?}{=} 0$ takes one more step. While asymptotic theory can often be invoked to assert that $-2 \log \Lambda$ is approximately $\chi^{2}$ distributed under the null hypothesis, we have two issues here. Most importantly, our hidden Markov model is imperfect, and in particular, different choices of probability constants within the model can substantially change the absolute magnitude of the test statistic. Second, our null hypothesis $\theta=0$ is at the boundary of the parameter space.

For these reasons, we chose to estimate an empirical null distribution for the test statistic
$-2 \log \Lambda$ rather than relying on theory. We approximated the null distribution simply by taking observed pBAF sequences and randomizing phase at each heterozygous site (keeping $|\triangle \mathrm{BAF}|$ fixed). We performed 5 independent randomizations per individual, computed $-2 \log \Lambda$ for each replicate, and used the resulting distribution of null test statistics to determine the cutoff value that would achieve a false discovery rate of 0.05 in light of the test statistics observed on real data. We performed this calibration independently for each autosome and chromosome X, yielding critical values from 1.41-3.87. In Supplementary Data, we provide q-values from this procedure for each event in our call set.

We note that this calibration procedure assumes that the only source of autocorrelation in pBAF is a true mosaic event, whereas in reality, other sources of autocorrelation exist; in particular, we found that sample contamination produced autocorrelation in regions of long-range LD (resulting in unusual false positive calls that we subsequently filtered). While we believe that our filtering eliminated most samples affected by spurious autocorrelation, the true FDR achieved by this calibration is slightly larger than $5 \%$ due to residual artifacts. We explore this issue in detail in Supplementary Note 3.1.

### 1.5 Calling event boundaries

We have thus far described a method that, for a given sequence of phased BAF deviations on a given chromosome, performs a hypothesis test indicating whether or not a mCA somewhere on the chromosome is needed to explain the observed BAF deviations. However, if so (i.e., if the null hypothesis is rejected), the algorithm that we have described thus far makes no indication of where on the chromosome the mCA is located. The reason is that for the purpose of detection, we wanted to integrate over all possible mCA boundaries (and all possible phase switches). Now, after detecting an event on a chromosome, we need a separate algorithm to call its boundaries.

To estimate mCA boundaries on a chromosome deemed to contain an event, we took 5 samples from the posterior of the HMM using the likelihood-maximizing choice of $\theta$. (We resampled if the state path for any posterior sample contained no nonzero states.) We then called the boundaries of the mCA using the consensus of the 5 samples. In Supplementary Data, we provide the ranges (among the 5 samples) for the left boundary and right boundary of each call. We analyze the coverage of these intervals for $F R A 10 B$-associated del(10q) events in Supplementary Note 4.2 and observe that the intervals achieve $\approx 73 \%$ coverage.

### 1.6 Calling copy number

The above detection procedure uses only BAF data and ignores LRR measurements by design (to be maximally robust to genotyping artifacts, e.g., "GC waves" that produce local shifts in genotyping intensities [52]); however, after detecting events, we incorporated LRR data to call
copy number. As in previous work $[1,2,8]$, we observed that mean LRR in called mCAs either increased or decreased linearly with estimated BAF deviation (for losses and gains) or was near zero (for CNN-LOHs) (Fig. 2a and Fig. S1.6-1). These trend lines allowed us to estimate the expected LRR/| $\triangle \mathrm{BAF} \mid$ slopes corresponding to gains and losses (approximately 2.16 and -1.89 , respectively). For a particular event with estimated BAF deviation $|\triangle \mathrm{BAF}|$, mean LRR $\hat{\mu}$, and standard error of LRR $\hat{\sigma}$, we could then compute the relative probabilities that the event was a loss, CNN-LOH, or gain (assuming that $\hat{\mu}$ had been drawn from a normal distribution with mean $|\Delta \mathrm{BAF}| \times\{-1.89,0,2.16\}$ and standard error $\hat{\sigma})$.

We implemented an improvement upon the above approach by leveraging chromosome-specific frequencies of loss, $\mathrm{CNN}-\mathrm{LOH}$, and gain. Specifically, we observed that some chromosomes contained many of one type of event and very few of another (Fig. 1), and we reasoned that this information should be helpful for calling events with uncertain copy number (i.e., events with low $|\triangle \mathrm{BAF}|$ and therefore little separation between the expected mean LRRs corresponding to loss, CNN-LOH, or gain). To guard against circular reasoning, we first split the LRR vs. $|\triangle \mathrm{BAF}|$ space into three zones bisecting the loss/CNN-LOH/gain trend lines: letting $s=$ $\mathrm{LRR} /|\Delta \mathrm{BAF}|$, we required that events with $s<-0.94$ be called either as loss or undetermined, events with $-0.94 \leq s<1.08$ be called either as CNN-LOH or undetermined, and events with $1.08 \leq s$ be called either as gain or undetermined. We further required that in order to call an event within one of these zones, its mean $\operatorname{LRR} \hat{\mu}$ needed to be either (i) at least twice as close to its expectation according to the closest trend line vs. the next closest; or (ii) within two standard errors $\hat{\sigma}$ of its expectation. With these rules in place, we assigned preliminary calls to each event, calling copy number for an event if the requirements above were satisfied and if the most likely call was at least 20 times more likely than the next-most likely (based on $\hat{\mu}$ and $\hat{\sigma}$ and the normal model described in the previous paragraph). We then re-called all events by performing the same procedure but incorporating a prior on call probabilities: for a given event, we put a prior on its copy number derived from the preliminary calls made for up to 20 events with similar boundaries (differing by $<10 \mathrm{Mb}$ and $<10 \%$ of chromosome length), adding a pseudo-count of 0.5 to prevent copy numbers from being assigned zero probability. Again, we only called copy number if the most likely call was at least 20 times more likely than the next-most likely ( $\sim 95 \%$ confidence).

We note one special case that we handled separately: isochromosomes, which involve simultaneous loss of one chromosomal arm and gain of the other (most notably i(17q); Fig. S2-17) were initially called as single whole-chromosome events by our detection procedure (which only considered BAF). We therefore included a separate check for whole-chromosome events examining whether LRR was significantly different for the $p$ vs. $q$ arms, and if so, we split the event at the centromere. We also performed manual review more generally to search for events with multiple $|\triangle \mathrm{BAF}|$ and/or LRR levels within a call, but did not find such events beyond subclonal CNN-LOHs (Section 1.8).


Figure S1.6-1. Total vs. relative allelic intensities of mCAs detected on each chromosome. For each of $N \mathrm{mCAs}$, mean $\log _{2} \mathrm{R}$ ratio (LRR) of each detected mCA is plotted against estimated change in $B$ allele frequency at heterozygous sites $(|\Delta \mathrm{BAF}|)$. The data exhibits the characteristic "arrowhead" pattern in which $\mathrm{LRR} /|\Delta \mathrm{BAF}|$ approximately equals a positive constant for gain events, zero for CNN-LOH events, and a negative constant for loss events. This pattern is very consistent across chromosomes.

### 1.7 QC filters on anomalous mCA calls

We found the approach that we have described to be quite robust, with the overall genomic distribution of detected events broadly consistent with previous work [1, 2, 7, 8]. However, in our initial analysis, we did detect several hundred apparent short interstitial CNN-LOH events indicative of technical artifacts (given that CNN-LOHs are generally produced by mitotic recombination and stretch to a telomere). On inspection, we discovered that the overwhelming majority of these artifactual events occurred at five specific regions of the genome: chr3: $\sim 45 \mathrm{Mb}$ ( 11 events), chr6: $\sim 30 \mathrm{Mb}$ (709 events), chr8: $\sim 45 \mathrm{Mb}$ ( 12 events), chr10: $\sim 80 \mathrm{Mb}$ ( 40 events), chr17: $\sim 40 \mathrm{Mb}$ (40 events). We also noticed that multiple such detections often occurred in the same sample; the union of all carriers contained 717 samples, nearly all of which carried the chr6 artifact at $H L A$ (which we did not mask from this initial analysis). The chr3, chr6, and chr8 regions have all been previously noted to harbor long-range LD [73], which suggested sample contamination [8] as the likely culprit: if a sample were contaminated with cells from another individual, then in regions of long-range LD (i.e., long haplotypes), allelic balance could shift in favor of one of the original sample's parental haplotypes (whichever one was a closer match to the foreign DNA). To be safe, we therefore excluded all 717 of these samples from our analysis, and we further excluded 6 individuals with three or more interstitial CNN-LOH calls and 2 individuals with three or more calls with high implied switch error rates, for a total of 725 exclusions.

Independent of the above issue, we also observed a rarer technical artifact in which short interstitial CNN-LOH calls were made in runs of homozygosity ( ROH ) in which a small fraction of sites had been incorrectly called as hets and subsequently phased on the same haplotype, resulting in very strong phase-aligned BAF deviations. These calls were easy to filter; we used a criterion of low heterozygosity ( $<1 / 3$ the expected heterozygosity in the region) and LRR $>-0.1$ (guaranteeing that the region could not possibly be hemizygous due to a loss event). After applying these filters, we were left with only 32 interstitial CNN-LOH calls among all samples with no obvious artifacts upon manual review.

### 1.8 Hidden Markov model for detecting multiple subclonal CNN-LOH events

The framework that we have described is aimed at identifying and calling sporadic mCAs arising in a population cohort for which most individuals with detectable clonality have a single simple event (a single clonal loss, CNN-LOH, or gain) at low-to-modest cell fraction. However, for a small subset of individuals (mostly with prevalent or incident cancer diagnoses), we detected multiple events, giving rise to the possibility that some samples might carry overlapping or contiguous events that require more careful treatment. On closer inspection, we observed one common form of additional complexity not properly handled by our approach described thus far: multiple subclonal CNN-LOH events on the same chromosome arm (Extended Data Fig. 8).

To treat this special case, we performed a post-processing step in which we re-analyzed detected events using Viterbi decoding on a 51-state HMM with $|\triangle \mathrm{BAF}|$ levels ranging from 0.01 to 0.25 in multiplicative increments. In this HMM, in addition to start/stop transitions between the 0 state and nonzero states (with probability $10^{-4}$ ) and switch error transitions between each state and its negative (with probability 0.001 ), we also introduced $|\Delta \mathrm{BAF}|$-shift transitions between different nonzero states (with probability $10^{-7}$ ). At the telomeres, we assigned a probability of 0.01 to starting/ending in each nonzero state. We examined all calls for which the posterior decoding resulted in more than one $|\triangle \mathrm{BAF}|$ state, and we observed that in nearly all of these cases, the event in question had originally been called as a CNN-LOH but exhibited a step function of increasing BAF deviations toward the telomere (consistent with multiple subclonal CNN-LOH events covering varying segments of a chromosome arm). We describe all such events in Extended Data Fig. 8.

We note that all five individuals in Extended Data Fig. 8 with multiple CNN-LOH events on chr13q appear to contain switch errors over 13q14. In reality, these individuals all also contain 13q14 deletions (evident in LRR data) and are mixtures of the following cell populations:

1. Normal cells: 1 paternal chr13, 1 maternal chr13.
2. $\operatorname{del}(13 q 14)$ cells, say on paternal chr13: 0 paternal $13 q 14,1$ maternal 13q14 (and normal elsewhere on chr13).
3. del(13q14) CNN-LOH cells: 0 paternal 13q14, 2 paternal rest of chr13, 0 maternal chr13.

The result is maternal $>$ paternal allelic imbalance in 13 q 14 but paternal $>$ maternal imbalance in the rest of chr 13 , resulting in the observed phased BAF profiles.

The individuals with multiple CNN-LOH events that carry germline risk alleles in cis (Table 1) are as follows:

- 1 of 8 individuals with multiple 1 p CNN-LOH events carries a germline risk haplotype: individual 165 carries the rs182971382 risk allele. An additional 3 individuals (39, 90, and 25) belong to IBD clusters at the MPL locus (Extended Data Fig. 5c).
- 10 of 12 individuals with multiple 9p CNN-LOH events (all but 1678 and 1623) carry the JAK2 46/1 risk haplotype.
- 0 of 2 individuals with multiple 11q CNN-LOH events carry the rs532198118 risk allele in the ATM locus.
- 5 of 7 individuals with multiple 15 q CNN-LOH events (all but 3508 and 3454) carry the $\sim 70 \mathrm{~kb}$ deletion at 15 q 26.3 .


## 2 Per-chromosome plots of mosaic event calls

On the following pages, we provide per-chromosome "pile-up" plots of all mosaic chromosomal alterations called on each chromosome.


Figure S2-1. Detected mCAs on chromosome 1. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-2. Detected mCAs on chromosome 2. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-3. Detected mCAs on chromosome 3. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr4: $N=160$ events $\left(N_{\text {loss }}=47, N_{\text {CNN-LOH }}=64, N_{\text {gain }}=8, N_{\text {undetermined }}=41\right)$ at FDR=0.05


Figure S2-4. Detected mCAs on chromosome 4. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-5. Detected mCAs on chromosome 5. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr6: $N=170$ events ( $N_{\text {loss }}=32, N_{\text {CNN-LOH }}=68, N_{\text {gain }}=6, N_{\text {undetermined }}=64$ ) at FDR=0.05


Figure S2-6. Detected mCAs on chromosome 6. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr7: $N=158$ events $\left(N_{\text {loss }}=70, N_{\text {CNN-LOH }}=43, N_{\text {gain }}=5, N_{\text {undetermined }}=40\right)$ at FDR=0.05


Figure S2-7. Detected mCAs on chromosome 7. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-8. Detected mCAs on chromosome 8. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-9. Detected mCAs on chromosome 9. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr10: $N=135$ events ( $N_{\text {loss }}=70, N_{\text {CNN-LOH }}=29, N_{\text {gain }}=5, N_{\text {undetermined }}=31$ ) at FDR=0.05


Figure S2-10. Detected mCAs on chromosome 10. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr11: $N=461$ events ( $N_{\text {loss }}=98, N_{\text {CNN-LOH }}=257, N_{\text {gain }}=1, N_{\text {undetermined }}=105$ ) at FDR=0.05


Figure S2-11. Detected mCAs on chromosome 11. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr12: $N=346$ events ( $N_{\text {loss }}=28, N_{\text {CNN-LOH }}=67, N_{\text {gain }}=156, N_{\text {undetermined }}=95$ ) at FDR=0.05


Figure S2-12. Detected mCAs on chromosome 12. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr13: $N=361$ events ( $N_{\text {loss }}=177, N_{\text {CNN-LOH }}=111, N_{\text {gain }}=0, N_{\text {undetermined }}=73$ ) at FDR=0.05


Figure S2-13. Detected mCAs on chromosome 13. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr14: $N=447$ events ( $N_{\text {loss }}=51, N_{\text {CNN-LOH }}=223, N_{\text {gain }}=38, N_{\text {undetermined }}=135$ ) at FDR=0.05


Figure S2-14. Detected mCAs on chromosome 14. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr15: $N=287$ events ( $N_{\text {loss }}=14, N_{\text {CNN-LOH }}=121, N_{\text {gain }}=59, N_{\text {undetermined }}=93$ ) at FDR=0.05


Figure S2-15. Detected mCAs on chromosome 15. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr16: $N=240$ events ( $N_{\text {loss }}=43, N_{\text {CNN-LOH }}=142, N_{\text {gain }}=2, N_{\text {undetermined }}=53$ ) at FDR=0.05


Figure S2-16. Detected mCAs on chromosome 16. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-17. Detected mCAs on chromosome 17. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr18: $N=131$ events ( $N_{\text {loss }}=14, N_{\text {CNN-LOH }}=20, N_{\text {gain }}=57, N_{\text {undetermined }}=40$ ) at FDR=0.05


Figure S2-18. Detected mCAs on chromosome 18. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.


Figure S2-19. Detected mCAs on chromosome 19. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr20: $N=227$ events ( $N_{\text {loss }}=140, N_{\text {CNN-LOH }}=55, N_{\text {gain }}=3, N_{\text {undetermined }}=29$ ) at FDR=0.05


Figure S2-20. Detected mCAs on chromosome 20. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr21: $N=153$ events ( $N_{\text {loss }}=20, N_{\text {CNN-LOH }}=35, N_{\text {gain }}=31, N_{\text {undetermined }}=67$ ) at FDR=0.05


Figure S2-21. Detected mCAs on chromosome 21. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chr22: $N=302$ events ( $N_{\text {loss }}=39, N_{\text {CNN-LOH }}=88, N_{\text {gain }}=62, N_{\text {undetermined }}=113$ ) at FDR=0.05


Figure S2-22. Detected mCAs on chromosome 22. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.
chrX: $N=2780$ events ( $N_{\text {loss }}=1862, N_{\text {CNN-LOH }}=28, N_{\text {gain }}=24, N_{\text {undetermined }}=866$ ) at FDR=0.05


Figure S2-23. Detected mCAs on chromosome X. Events are color-coded by copy-number: loss (red), CNN-LOH (green), gain (blue), undetermined (grey). Darker coloring indicates higher allelic fraction. Multiple events within a single individual are plotted with the same y-coordinate (at the top of the plot). Note that events with unknown copy number also generally have greater uncertainty in their boundaries due to low allelic fraction.

## 3 Confirmatory analyses for event calls

While performing direct molecular validation of our mosaic event calls would have been ideal, we were unable to do so as we did not have access to the original DNA samples. We therefore conducted a series of confirmatory analyses aimed at (i) validating our false positive control and (ii) replicating our GWAS results and distributional results.

### 3.1 Estimation of true false discovery rate

Our procedure for calling the existence of a mosaic event (Supplementary Note 1.4) involved identifying significant autocorrelation in phased BAF deviations using a likelihood ratio test statistic. We calibrated these test statistics empirically using a permutation-based procedure (phase randomization) to obtain a nominal $5 \%$ false discovery rate (FDR) threshold. However, this permutationbased $5 \%$ FDR threshold assumed that the only source of autocorrelation in phased BAF is a true mosaic event. In reality, other sources of autocorrelation exist; in particular, we found that sample contamination produced autocorrelation in regions of long-range LD (resulting in unusual false positive calls that we subsequently filtered). While we believe that our filtering eliminated most samples affected by spurious autocorrelation, our true FDR is likely to be slightly larger than 5\% due to residual artifacts.

Fortunately, we can estimate our true FDR by leveraging the fact that true-positive events should be observed more frequently in the genomes of older people, while false-positive calls (which have no relation to age) should be observed in individuals whose age distribution matches that of the study population. This observation allows us to estimate FDR by comparing the age distributions of the highest-confidence calls ( 6,543 calls passing a permutation-based FDR of $1 \%$ ) vs. medium-confidence calls (1,797 additional calls passing a permutation-based FDR of $5 \%$ when combined with the high-confidence calls, but failing the $1 \%$ threshold). The medium-confidence call set is expected to have a false positive rate of $\approx 20 \%$ based on the permutation-based FDRsmeaning that its age distribution is expected to be an 80:20 mixture of (i) the age distribution of high-confidence calls and (ii) the age distribution of the study population. That is, the age distribution of medium-confidence calls should relax toward the age distribution of the overall study due to the inclusion of false positives-which is precisely what we see (Extended Data Fig. 2). (The figure also includes low-confidence calls at FDR $10 \%$ for additional context, although we did not analyze these calls.)

Upon fitting the age distribution of medium-confidence calls as a mixture of the age distribution of high-confidence calls and the overall study distribution, the regression fit gives mixture proportions of $\approx 70: 30$ rather than $80: 20$, implying a true FDR of $7.5 \%(6.2-8.8 \%, 95 \% \mathrm{CI})$ when combined with the high-confidence calls-slightly higher than the permutation-based FDR of $5 \%$, as expected. We note that this estimate is contingent on two assumptions: (i) the high-confidence
call set predominantly contains true positives (which is supported by the observation that changing the high-confidence FDR threshold from $1 \%$ to $0.1 \%$ results in a near-identical "gold standard" age distribution and inferred true FDR of $7.1 \%$ (5.8-8.5\%); and (ii) the true positives in the high-confidence and medium-confidence call set have the same age distribution. While we acknowledge that these assumptions are imperfect, this analysis gives good evidence that our FDR is well-controlled. (We also note that while we cannot completely rule out the possibility that our FDR is higher than we estimated, the key results of our paper are robust to higher FDRs than estimated; e.g., we would only expect a higher-than-estimated FDR to weaken GWAS associations and decrease effect sizes.)

### 3.2 Allelic evidence for validity of $10 q$ event calls

We can also provide one other line of evidence giving us confidence in our FDR control: in chromosome 10q, our event calls display striking specificity for the FRA10B risk haplotype that appears to be required for $10 q 25$ breakage. Of 69 event calls on $10 q$ with estimated breakpoints near FRA10B (104-122Mb) and extending to the q-telomere, 60/60 loss calls carry the rs118137427:G risk allele ( $\mathrm{RAF}=5 \%$ ), $0 / 1 \mathrm{CNN}-\mathrm{LOH}$ calls carry the risk allele, and $7 / 8$ calls with undetermined copy number carry the risk allele. In contrast, false positive calls (and CNN-LOH calls) would have a $90 \%$ chance of being homozygous for the non-risk allele-providing strong evidence that our FDR control is working as expected. (This analysis was uniquely possible for the del(10q) association; the other loci we identified were associated with CNN-LOH events, only a minority of which were related to risk alleles.)

### 3.3 Replication of distributional results

We confirmed our results concerning the age and sex distributions of particular events by analyzing the largest previously published tables of event calls (Jacobs et al. [1], Laurie et al. [2], and Vattathil \& Scheet [8]).

- del(10q) individuals are younger (vs. other events) and are predominantly female. We replicated this finding in the Vattathil \& Scheet data set ( $P=0.003$; binomial test for enrichment of $<50$-year-old females). Specifically, we identified three individuals with event calls matching the profile of the $\operatorname{del}(10 \mathrm{q})$ events of interest (estimated left breakpoint near FRA10B, right endpoint at the q-telomere, negative mean LRR), and we compared the age and sex of these individuals to the rest of the Vattathil \& Scheet call set. (The Jacobs et al. and Laurie et al. data sets did not contain any such calls, which was not surprising given that most $\operatorname{del}(10 \mathrm{q})$ events have cell fractions $<5 \%$, below the limit of these studies' sensitivity; see Supplementary Note 5.2.)
- del(16p11.2) individuals are younger (vs. other events) and are predominantly female. Although we were underpowered to replicate this finding, we found support for it in the Laurie et al. data set, albeit only from one individual. Specifically, we identified one del(16p11.2) event in the Laurie et al. data, which was in a 37 -year-old female. For context, the Laurie et al. call set was $72 \%$ male, and an age of 37 corresponded to the 13 th percentile of the call set. (The published data sets we analyzed contained two other 16 p 11.2 event calls, but both appeared to be 16 p 11.2 duplications.)
- CNN-LOH events do not show a male skew (unlike losses and gains). We replicated the sex difference between CNN-LOH vs. other events in the Jacobs et al. data ( $P=0.001$ ) and Laurie et al. data ( $P=0.1$ ). (The Vattathil \& Scheet call set only includes $30 \mathrm{CNN}-\mathrm{LOH}$ calls.) In our UK Biobank calls, we also noticed a trend for CNN-LOH events to occur in younger individuals vs. losses and gains, but this age difference did not replicate ( $P=0.5$ in Jacobs et al., $P=0.2$ in Laurie et al.). One possible reason that the age difference failed to replicate is limited power; however, another possible reason is that our analysis was more sensitive to CNN-LOH events than other events (because CNN-LOH events cause twice as large a BAF deviation), resulting in more detections of small clones in younger individuals. Supplementary Table 14 provides a comparison of age and sex for loss, CNN-LOH, and gain events across studies.


### 3.4 Replication of GWAS results

We replicated the associations we identified at 10 q and 15 q (Table 1) in the WGS cohort $(2,079$ people). (The other associations we found are too weak to replicate in a cohort of that size; e.g., $<1$ MPL-associated 1p CNN-LOH event and $<1$ ATM-associated 11q CNN-LOH event are expected.) Specifically, restricting our analysis to the unrelated parents in the WGS cohort, we replicated the association of rs118137427 with $F R A 10 B$-related 10q deletions ( $P=0.01$; both del(10q) parents carry the minor risk allele), and we replicated the association of the 70kb germline deletion at TM2D3/TARSL2 with 15 q CNN-LOH ( $P=0.001$; the single $15 \mathrm{q} \mathrm{CNN}-\mathrm{LOH}$ individual carries the 70kb germline CNV).

We also note that our UK Biobank analyses already achieved an independent confirmation of each reported association by virtue of the fact that we ran two orthogonal types of association analysis: (i) a standard GWAS testing for association between inherited variants and presence of nearby somatic events, and (ii) an allelic association test checking whether somatic events preferentially deleted or duplicated one allele. We verified that each of these tests produced well-calibrated $P$ values (Fig. S3.4-1). We found that all hits that reached $P<1 \times 10^{-8}$ in either test reached nominal significance in the other test, providing strong evidence of true association. In particular, for each of our key results ( $1 \mathrm{p}, 10 \mathrm{q}, 11 \mathrm{q}, 15 \mathrm{q}$ ), the allelic bias was either perfect or near-perfect (Table 1).


Figure S3.4-1. Quantile-quantile plots of $P$-values produced by association analyses. These plots verify the calibration of the statistical tests we used to identify the genome-wide significant associations reported in Table 1 (see Methods for details). In each plot, the blue dots correspond to an analysis of all variants tested, while the black dots correspond to an analysis in which regions surrounding significant associations were excluded. Specifically, the plots respectively exclude $10: 105-120 \mathrm{Mb}, 1: 40-50 \mathrm{Mb}, 11: 105.5-110.5 \mathrm{Mb}, 15: 100 \mathrm{Mb}$-qter (for the autosomal GWAS on $n=120,664$ individuals), X:55-66Mb and $114-116 \mathrm{Mb}$ (for the X loss allelic shift association analysis on $n=3,220$ females), and $2: 231-232 \mathrm{Mb}$ and $6: 30-33 \mathrm{Mb}$ (for the X loss GWAS on $n=66,685$ females). In all cases, exclusion of the hit regions (which account for a small fraction of the variants tested) results in a distribution close to the expected null.

## 4 Statistical properties of event calls

In this note we examine the statistical properties of our detection methodology, focusing on the size distribution of events we detect (with comparisons to previous studies) and the resolution of event boundaries our method estimates.

### 4.1 Size and clonal fraction distribution of events

We first examine the size distribution of our autosomal mosaic event calls (stratified by copy number) in comparison to Jacobs et al. [1], Laurie et al. [2], Machiela et al. [7], and Vattathil \& Scheet [8]). The overall distribution of event sizes we detect is broadly consistent with these previous studies (Fig. S4.1-1). Noticeable differences can be explained by differences in detection methodology (e.g., Jacobs et al. and Machiela et al. restricted to events $>2 \mathrm{Mb}$ ) and sample ascertainment (e.g., most of the calls from Machiela et al. come from cancer cases, in which short gain events are much more common than in healthy elderly individuals). Across all studies, detected mosaic events are generally much larger than inherited structural variants (which have a median length of $\approx 2.5 \mathrm{~kb}$ for deletions and $\approx 36 \mathrm{~kb}$ for duplications [74]), although this difference is presumably driven in part by detection sensitivity.

We next examine the minimum size of detectable events as a function of clonal cell fraction. Our minimum detectable event size was $\approx 100 \mathrm{~kb}$ for events at high clonal fractions (Fig. S4.1-2). In general, the size threshold scales with the inverse square of the clonal fraction, as we show in Supplementary Note 5.1 and is borne out empirically in Fig. S4.1-2. At a clonal fraction of $\approx 0.1$, events $>1 \mathrm{Mb}$ are detectable, while at a clonal fraction of $\approx 0.01$, events $>100 \mathrm{Mb}$ are detectable. Conversely, 100 Mb events are detectable down to a clonal fraction of $\approx 0.01$, while 1 Mb events are detectable down to a clonal fraction of $\approx 0.1$. (We caution, however, that these numbers are specific to the phasing quality and genotyping platform of UK Biobank.) We also note that CNNLOH events are twice as easy to detect as loss and gain events because CNN-LOH events produce twice the BAF shift of loss and gain events. Overall, the majority of events we detected were present at low clonal fractions (Fig. S4.1-3).

One possible consequence of differential detection sensitivity between methods is that the relative frequencies of different types of events may appear to differ across studies. As a case in point, we consider $20 q$ deletions. In most previous studies of mCAs, del $(20 q)$ events have been the most common detected loss event, and sometimes the most common mosaic event altogether [1, 2, 7, 8]. In contrast, in our call set, many events are detected at frequencies similar to del(20q) (although it is still the second-most common loss event after del(13q14); Fig. 1). However, on closer inspection, we realized that our call rate for 20 q deletions is actually very similar to previous studies: we call 20 q deletions in 130 of 151,202 individuals ( $0.09 \%$ ), very similar to the $91 / 82,483(0.11 \%)$ call rate for $\operatorname{del}(20 q)$ in ref. [25].


Figure S4.1-1. Size distributions of mCA calls in this study and previous work. We compare the sizes of autosomal mosaic events called in this work and the four largest previous studies of mosaic chromosomal alterations (Jacobs et al. [1], Laurie et al. [2], Machiela et al. [7], and Vattathil \& Scheet [8]). Events are stratified by copy number (loss, CNN-LOH, gain); our study and Vattathil \& Scheet also call substantial numbers of low-clonal-fraction events for which copy number is undetermined. Violin plots show size distributions over $N$ mCAs with each copy number call. The overall distributions of detected event sizes are broadly consistent. Factors that may contribute to differences between studies include differences in methodology (e.g., Jacobs et al. [1] and Machiela et al. [7] restricted to events $>2 \mathrm{Mb}$ ) and sample ascertainment (e.g., age, sex, cancer status).


Figure S4.1-2. Scatter plot of clonal cell fraction vs. event size for detected mCAs. Events are color-coded by copy number (red=loss, green=CNN-LOH, blue=gain). (Events with undetermined copy number are not plotted because the relationship between LRR, BAF, and cell fraction is unclear for these events.) Events forming vertical stripes on the far right of the plot correspond to whole-chromosome losses (e.g., loss of X) and trisomies. The scatter plot has a triangular shape because the minimum detectable clonal cell fraction scales as the inverse square root of event size (Supplementary Note 5.1). We also note that CNN-LOH events are twice as easy to detect as loss and gain events because CNN-LOH events produce twice the BAF shift of loss and gain events.


Figure S4.1-3. Extent of clonal proliferation of mCAs detected on each chromosome. For each of $N \mathrm{mCAs}$ called as a loss, CNN-LOH, or gain, we estimate its allelic fraction (i.e., fraction of blood cells with the mCA) from LRR and $|\triangle \mathrm{BAF}|$. The violin plots show allelic fraction distributions stratified by chromosome and copy number (whenever at least ten events were called).

We suspect that the reason for the lower relative call rate for del(20q) events in our data could be a combination of (i) differences in genotyping coverage or performance (as UK Biobank used Affymetrix whereas previous studies used Illumina); (ii) increased sensitivity of our approach for detecting very long events at low cell fractions, resulting in relatively more detections of long CNN-LOH events and trisomies vs. focal deletions; and (iii) differences in minimum lengths of events analyzed (e.g., Jacobs et al. and Machiela et al. examined $>2 \mathrm{Mb}$ events, whereas we did not impose an explicit size limit), resulting in our method producing relatively more deletion calls at tightly focal deletion regions (e.g., DNMT3A, TET2, DLEU2) vs. 20q, at which deletions tend to be less focal (several Mb). For example, at DLEU2 on 13q, we call 166 deletions, of which 48 ( $29 \%$ ) are $<2 \mathrm{Mb}$. In contrast, only 7 of $130 \mathrm{del}(20 \mathrm{q})$ events are $<2 \mathrm{Mb}$, such that if we restricted to $>2 \mathrm{Mb}$ events, $\operatorname{del}(20 \mathrm{q})$ would be the most common deletion in our call set.

### 4.2 Breakpoint resolution of events

To estimate the error in our breakpoint calls and the coverage of our confidence intervals, we analyzed the 60 del(10q) calls associated with breakage at the fragile site $F R A 10 B$ (Fig. 3). These calls provide a unique opportunity for measuring breakpoint uncertainty because they are readily confirmed as very likely to be $F R A 10 B$-associated (all 60 involve carriers of the rs118137427:G risk haplotype at $5 \%$ frequency in the population), and for all of these events, the true breakpoint is probably in or very near $F R A 10 B$ (chr10:113Mb). Using this information, we computed an RMSE of 3.0 Mb across the $60 \mathrm{del}(10 \mathrm{q})$ breakpoint calls, and we observed that 44 of 60 confidence intervals spanned $F R A 10 B$ ( $\approx 73 \%$ coverage). This coverage increased to 53 of 60 ( $\approx 88 \%$ coverage) upon expanding interval sizes by 1 Mb in each direction.

We also expected that breakpoint uncertainty should exhibit an inverse relationship with cell fraction. Plotting breakpoint calls and confidence intervals against cell fractions confirmed this expectation (Fig. S4.2-1). For the $10 \mathrm{del}(10 \mathrm{q})$ calls with highest cell fractions ( $0.068-0.162$ ), 7 of 10 breakpoints were correct within 0.2 Mb , and 5 of 10 within 0.1 Mb .


Figure S4.2-1. Estimated breakpoints of FRA10B-related del(10q) events. Breakpoints and breakpoint uncertainty estimates (Supplementary Note 1.5) are plotted for each of the $60 \mathrm{del}(10 \mathrm{q})$ events we detected that were associated with breakage at the fragile site FRA10B (Fig. 3). These calls provide a unique opportunity for measuring breakpoint uncertainty because they are readily confirmed as very likely to be FRA10B-associated (all 60 carry the rs 118137427:G risk haplotype at $5 \%$ frequency in the population), and for all of these events, the true breakpoint is probably in or very near $F R A 10 B(c h r 10: 113 \mathrm{Mb})$.

## 5 Detection sensitivity using long-range phasing vs. previous approaches

In this note we compare the statistical sensitivity of our long-range phase-based mCA detection approach (Supplementary Note 1) to previous approaches. We focus on comparisons with the hapLOH method $[8,54]$, which was previously shown to be more sensitive for detection of large events at low cell fractions compared to methods that do not incorporate phase information (e.g., circular binary segmentation, CBS [56] and Genomic Alteration Detection Analysis, GADA [57]); however, we also explore the amount of statistical signal available to the latter approaches in our data. (We note that for detection of shorter constitutional or high-cell-fraction CNVs-for which CBS and GADA were originally designed-the relative performance of methods is likely to be very different.)

### 5.1 Theoretical comparison of statistical tests

While our method applies a principle similar to hapLOH (which demonstrated the value of phase information for event detection $[8,54]$ ), our model and statistical test are quite different from hapLOH. Specifically, whereas hapLOH tabulates and tests "switch consistency" between consecutive heterozygous SNPs, our method applies a hidden Markov model to fully harness long-range phase available across very many SNPs in large data sets such as UK Biobank (Supplementary Note 1).

To understand the effects of these statistical frameworks on detection sensitivity, a mathematical derivation is helpful. Consider a sequence of $M$ consecutive correctly-phased heterozygous SNPs spanning a region in which a mosaic event has created a small BAF shift of $\delta$ standard deviations away from 0.5. That is, within the mosaic region, phased BAF (pBAF) has the distribution

$$
\begin{equation*}
\mathrm{pBAF} \sim N\left(0.5+\delta \sigma, \sigma^{2}\right) \tag{8}
\end{equation*}
$$

where $\sigma^{2}$ denotes BAF measurement noise. We can then compute expected $z$-scores using the switch consistency statistic of hapLOH vs. a long-range phase-based approach that aggregates the pBAF shift across the entire region:

- Switch consistency (hapLOH). Equation (8) implies that at each heterozygous SNP,

$$
\begin{equation*}
P(\mathrm{pBAF}>0.5) \approx 0.5+\frac{1}{\sqrt{2 \pi}} \cdot \delta \tag{9}
\end{equation*}
$$

where $\frac{1}{\sqrt{2 \pi}}$ comes from the normal probability density (assuming $\delta$ is small). Consequently,
the probability of switch consistency between two consecutive SNPs (indexed 1 and 2) is

$$
\begin{align*}
& P\left(\operatorname{pBAF}_{1}>0.5\right) \cdot P\left(\mathrm{pBAF}_{2}>0.5\right)+P\left(\mathrm{pBAF}_{1}<0.5\right) \cdot P\left(\mathrm{pBAF}_{2}<0.5\right) \\
& \quad=\left(0.5+\frac{1}{\sqrt{2 \pi}} \cdot \delta\right)^{2}+\left(0.5-\frac{1}{\sqrt{2 \pi}} \cdot \delta\right)^{2}=0.5+\frac{\delta^{2}}{\pi} . \tag{10}
\end{align*}
$$

That is, within the mosaic region, switch consistency behaves like a biased coin with a bias of $\frac{\delta^{2}}{\pi}$. It follows that the expected $z$-score for detecting elevated switch consistency across $M$ consecutive observations is approximately

$$
\begin{equation*}
E\left[z_{\mathrm{hapLOH}}\right] \approx \frac{2 \delta^{2}}{\pi} \sqrt{M} \tag{11}
\end{equation*}
$$

- Long-range phase. In contrast, if we instead directly aggregate our signal of a $\delta$-s.d. pBAF shift (equation (8)) across the whole $M$-SNP region-essentially what our hidden Markov model allows us to do-we obtain a $z$-score of

$$
\begin{equation*}
E\left[z_{\mathrm{LRP}}\right]=\delta \sqrt{M} \tag{12}
\end{equation*}
$$

The key difference between the $z$-score formulas derived in equations (11) and (12) is the exponent of $\delta$. The difference in exponents implies that hapLOH is sensitive to events with BAF shift $\delta>M^{-1 / 4}$ (up to a constant factor), while our approach is sensitive to events with BAF shift $\delta>M^{-1 / 2}$ (which is much smaller than $M^{-1 / 4}$ for large $M$, i.e., long events).

We note that for simplicity, we did not consider switch errors in this derivation, which highlights the difference between the methods in the limit of perfect phasing. In practice, the above derivation should be treated as an approximation given that switch errors in inferred phase slightly reduce the sensitivity of both approaches. However, the approximation is quite good in UK Biobank given that our phasing is accurate to tens of megabases [23,24].

### 5.2 Empirical power comparison

To compare the sensitivity of different detection approaches in practice, we implemented the switch consistency test used by hapLOH $[8,54]$ and a mean LRR test using the same basic principle as CBS [56] and GADA [57]. (CBS and GADA are both segmentation methods for identifying regions of copy alteration; within a region, the methods check for consistent allelic intensity deviations.) We then computed test statistics for each approach on the event calls produced by our method, checking which of our events could also have been detected by the other approaches. (We considered directly running each of the other methods but realized that extensive post-processing and parameter-tuning are generally required to QC the output of mosaic event callers; see e.g.

Laurie et al. (2012), Supplementary Note pp. 6-14 [2], and Jacobs et al. (2012), Methods and Supplementary Note pp. 15-16 [1].)

We observed that fewer than half of the events we called (39\%) reached nominal $P<0.05$ significance using the hapLOH switch consistency test (Fig. S5.2-1). Much stronger significance would be required to control false discovery rate in a genome-wide detection setting. We observed that requiring $P<0.0001$ significance reduced the detectable proportion of events to $23 \%$. Detection sensitivity improved as a function of clonal cell fraction: among events with $>2 \%$ (resp. $>5 \%$ ) cell fraction, the hapLOH test achieved $P<0.0001$ for $40 \%$ (resp. $72 \%$ ) of calls. We observed similar results for the mean LRR statistic (restricted to copy-changing events): among losses and gains with $>2 \%$ (resp. $>5 \%$ ) cell fraction, the mean LRR test achieved $P<0.0001$ for 55\% (resp. 88\%) of calls. (Without further QC, this test would likely produce false positives in practice; LRR is generally prone to local shifts in genotyping intensities [52].)

We note that these quantitative comparisons are undoubtedly specific to the phasing quality and genotyping platform of UK Biobank: in the data we analyzed, phasing quality is exceptionally high while BAF precision appears to be much lower than in previous studies (perhaps because of the Affymetrix genotyping platform used here vs. the Illumina arrays used by previous studies), giving our method an advantage over others. In more typical data sets (with lower-quality phase and more precise genotyping intensities), the performance difference is likely to be smaller.

The above analyses are subject to the caveat that not all of the event calls made by our method are correct: we estimate that our call set has an FDR of 6-9\% (Supplementary Note 3.1), but we cannot completely rule out the possibility that our FDR is higher. However, one particular eventterminal deletion of 10 q -uniquely provides a gold standard test set and allows comparison of sensitivity across studies (genotyping and phasing differences notwithstanding).

The del(10q) event is unique in its genomic specificity (breakage at $F R A 10 B$ with subsequent deletion of 10q25.2-10qter) and ease of corroboration (via checking for the rs118137427:G risk haplotype ( $\mathrm{RAF}=5 \%$ ), on which all del(10q) events we observed occurred). Using our methodology, we detected 60 occurrences of this event in 151,202 UK Biobank individuals (with 60/60 carrying the risk haplotype), nearly always at low cell fraction (mean $5.5 \%$, s.d. $2.9 \%$ ). Only 18 of these events reach nominal significance ( $P<0.05$ ) using the hapLOH switch consistency test. Consistent with these results, ref. [8] detected only 3 such events among 31,100 individuals, and earlier studies that applied CBS or GADA, which had sensitivity limits of $>5 \%$ cell fraction [1, 2, 7], did not detect any such events among a total of 127,179 individuals analyzed.

We caution that in general, comparing the statistical performance of detection methods that have been applied to different data sets is complicated by genotyping differences as well as differences in sample ascertainment (e.g., age, sex, and cancer status), but for completeness, Supplementary Table 15 provides a breakdown of detection rates by copy number for our study and previous large studies [1,2,7,8].


Figure S5.2-1. Sensitivity of phase concordance-based statistical test for detecting mCAs. For each mCA called by our algorithm (red=loss, green $=\mathrm{CNN}-\mathrm{LOH}$, blue=gain, grey=undetermined copy number), we computed a binomial $P$-value using the phase concordance test of ref. [54]. This test makes use of relative haplotype phase between successive heterozygous SNPs but does not take advantage of long-range phase information. We plotted the inferred cell fraction of each mCA against its phase concordance $P$-value. (For events with uncertain copy number, we did not infer a cell fraction, so these events are plotted on the $x$-axis.) We observe that the majority of events detectable by our analysis do not reach nominal significance using the phase concordance test, as expected for subtle allelic imbalances that must be aggregated in-phase over tens of megabases in order to be detectable.

## 6 Analysis of co-occurring mosaic events

Some kinds of somatic mutations could in principle have synergistic growth-promoting effects, a hypothesis suggested by earlier observations that individuals acquire multiple mCAs much more frequently than expected by chance $[1,2,7,8]$ (Fig. 2b and Supplementary Table 2). We identified three clusters of significantly co-occurring mCAs (Bonferroni $P<0.05$; Fisher's exact test), one of which included events commonly observed together in chronic lymphocytic leukemia (CLL) [32, 33]: trisomy 12, 13 q LOH (including deletion and CNN-LOH), and clonal $\mathrm{V}(\mathrm{D}) \mathrm{J}$ deletions on chromosomes 14 and 22 (Fig. 2b and Supplementary Table 3). (The V(D)J deletions may be markers for the cell populations in which the other events are selected.) The co-occurring events generally exhibited cell fractions suggesting co-occurence within the same clonal cell population (Extended Data Fig. 3) and could be explained by synergistic effects of proliferation, by shared genetic, cell-biological, or environmental drivers, or by sequential progression from one event to the other.

## 7 Analysis of focal deletions

The genomic distribution of mCAs is highly non-random, and commonly deleted regions (CDRs) $<1 \mathrm{Mb}$ in length are of particular interest as they may indicate haploinsufficient genes for which loss of one copy leads to excessive cell proliferation [2]. Excluding $V(D) J$ recombination regions in $14 \mathrm{q} 11.2,14 \mathrm{q} 32.33$, and 22 q 11.22 , the three most commonly deleted regions targeted $D N M T 3 A$ on 2 p , TET2 on 4q, and DLEU2/DLEU7 on 13q, matching observations in previous studies $[2,8]$; we further observed that large majorities of CNN-LOH events on these chromosome arms included these genes, suggesting convergent patterns of selection (Fig. 1 and Fig. S7-1). (We observed a similar pattern with longer deletions and CNN-LOH events spanning ATM on 11q; Fig. S2-11.) We also observed CDRs at three genes not previously noted in population studies of mCAs but commonly mutated in cancers: ETV6 on 12p (mutated in hematological malignancies), NF1 on 17q (deleted in neurofibromatosis type 1), and CHEK2 on 22q (involved in the DNA damage response and mutated in many cancers) (Figures S2-12, S2-17, and S2-22). Additionally, we observed two new CDRs for which literature search implicated putative target genes: RPA2, which is one of six genes in a 300 kb region of $1 \mathrm{p} 36.11-1 \mathrm{p} 35.3$ contained in six deletions and is involved in DNA damage response [75], and $\operatorname{RYBP}$, which is the only gene in a 620 kb region of 3 p 13 contained in seven deletions and has been reported to be a tumor suppressor gene [76] (Figures S2-1 and S2-3).

To detect CDRs, we needed to identify short genomic regions covered by many loss events; however, we also needed to require that the losses be somewhat specific to a focal region (e.g., a short deletion should carry much more weight than a deletion of an entire arm). To capture this intuition, we gave each loss event a weight equal to 6 Mb / [event length], with a maximum weight of 1 (for events shorter than 6 Mb ). We then examined all regions with a total weight exceeding 4 and checked whether the pileup of losses at these regions was sufficiently focal to be deemed a CDR.


Figure S7-1. Genomic coverage by somatic loss and CNN-LOH events. The red and green curves indicate the total numbers of detected somatic losses (red) and CNN-LOHs (green) covering each position in the genome.

## 8 Non-age-related mosaic events in ASDs and the general population

Two mCAs (deletion of 16p11.2 and 10q25.2-qter) exhibited no increase in frequency with advancing age, deviating from typical age-related clonal hematopoiesis (Fig. 2e and Supplementary Table 5) and suggesting the possibility of acquisition early in development. Given the wellestablished relationship of 16 p 11.2 events to autism [77-79] and the presence of many (16) genes in the deleted 10 q region with elevated expression in brain [80], we evaluated their relationships to ASDs in the Simons Simplex Consortium (SSC) [26] WGS data.

### 8.1 Analysis of del(16p11.2) events

Copy-number variation at 16 p 11.2 is one of the strongest known genetic effects on ASDs, occurring most often as a de novo mutation [77]. Inherited 16p11.2 deletions have been reported to produce a macrocephalic phenotype, while inherited duplications produce a microcephalic phenotype [78,79].

Surprisingly, we observed 16 p 11.2 deletions in mosaic form in the general population (22 observations among 151,202 individuals from UK Biobank; Fig. S2-16). Detected events were present at cell fractions of 19-60\%. Intriguingly, such mosaic deletions were much more common among females than males ( 19 females versus 3 males), and as noted above, mosaic del(16p11.2) carriers had an average age similar to the overall study cohort-contrary to the usual skew to the elderly (Fig. 2e and Supplementary Table 5). The lack of an age skew and the high observed cell fractions suggest that these mutations might be developmentally-acquired rather than adultacquired (although other data will be needed to make a confident determination).

We searched for mosaic 16p11.2 events in the SSC WGS data using our sensitive, haplotypebased mCA detection approach (capable of detecting such events at low cell fractions), but we did not observe any mosaic 16p11.2 mutations among 519 ASD probands or 1,560 family members (parents and unaffected siblings) (Fig. S8.1-1). However, this observation does not preclude the possibility that such mutations might occur at lower than $1 / 519$ frequency among ASD cases (especially given that meiotic, constitutional 16 p11.2 mutations are presumably more common and explain only $\approx 1 \%$ of cases).

While more data will be needed to evaluate the potential relationship between mosaic 16 p 11.2 deletions and ASDs, the fact that somatic 16p11.2 deletions give rise to clonality at high cell fractions (in UK Biobank samples) provides a clue to further understanding their effects on development: intriguingly, our observation of mosaic 16p11.2 deletions-but not duplications-aligns with previous work suggesting that 16 p 11.2 deletions may affect proliferation of a progenitor cell $[78,79]$. Specifically, our observation of clonal mosaic 16p11.2 deletions in UK Biobank


Figure S8.1-1. No evidence for mosaic 16p11.2 deletion in SSC samples. Read depth profile plots in chr6:25-35Mb (one line per SSC individual) show no evidence of individuals carrying the 16p11.2 deletions we observed in UK Biobank (Fig. S2-16). (a) Roughly 30 samples (red) exhibit read dropout throughout the region, likely due to technical effects. (b) One sample has a candidate mosaic duplication from $\sim 26.8-31.9 \mathrm{Mb}$.
The fact that we did not detect any examples of mosaic 16p11.2 deletion in the SSC cohort could be due to chance (given that the detection frequency in UK Biobank was 1 in $\sim 6,000$ individuals) or due to ascertainment of the SSC for non-carriers of constitutional 16p11.2 CNVs (which may also have excluded mosaic carriers).
samples suggests that 16 p 11.2 deletion causes mutant progenitors or stem cells to either increase proliferation or resist differentiation, with the result that clonal progeny of the mutant cell expand in numbers relative to other cells (making the mutation detectable). In contrast, we notably did not observe clonal mosaicism involving the reciprocal mutation (16p11.2 duplication), suggesting that cells with 16 p11.2 deletion have a proliferative advantage but cells with the duplication do not. (Assuming these mutations are produced by non-allelic homologous recombination of sister chromatids, both mutations should arise equally frequently.) This proliferative hypothesis is consistent with the macrocephalic phenotype of 16 p 11.2 deletions and the microcephalic phenotype of 16 p11.2 duplications [78,79], leading us to speculate that 16 p11.2 mutation may have analogous biological effects during hematopoiesis and brain development.

### 8.2 Analysis of del(10q) events and fragile site FRA10B

Applying our methodology to detect mosaic del(10q) events in SSC revealed two parent-child duos in which both parent and child had acquired the 10 q terminal deletion (in mosaic form). While both children in the duos were unaffected siblings, this observation of Mendelian inheritance for an acquired event nonetheless informs our thinking about ASDs (which are highly heritable), as it shows that acquired mutations can exhibit heritable behavior.

Our association analysis in UK Biobank showed that the heritable acquisition of 10 q deletions was linked to a common risk haplotype (allele frequency=5\% in the population) tagged by rs118137427 near $F R A 10 B$, a known genomic fragile site $[34,35]$ at the estimated common breakpoint of the 10 q deletions (Fig. 3). In the SSC cohort, we observed that all four mosaic $\operatorname{del}(10 \mathrm{q})$ individuals possessed expanded AT-rich repeats at $F R A 10 B$ on the rs118137427:G risk haplotype (Fig. 3c and Extended Data Fig. 5a,b). To further investigate the repeat structure of FRA1OB alleles, we undertook a detailed analysis of the variable number tandem repeat (VNTR) sequence at FRA10B in the SSC WGS data. This analysis (detailed in the following subsections) revealed a diversity of novel VNTR sequence motifs ( 12 distinct primary repeat units carried by 26 SSC individuals from 14 families); all of these novel VNTR motifs were present on the rs118137427:G haplotype background, despite the low frequency of that haplotype in the population (5\%) (Extended Data Fig. 5a,b, and Fig. S8.2-1). We did not observe an association between the VNTR motifs and autism status in the SSC cohort.

### 8.2.1 Overview of previous work on FRA10B

Sutherland et al. [34] discovered the fragile site $F R A 10 B$, observing that a small fraction of individuals ( $\approx 1$ in 40 Australians [81]) carry a polymorphism resulting in chromosomal gaps or breakage at 10 q 25 in lymphocyte culture under bromodeoxyuridine (BrdU) treatment. Hewett et al. [35] characterized the molecular structure of FRA1OB using Sanger sequencing, obtaining the
following key findings:

- All alleles at the $F R A 10 B$ locus contain an extremely $(\approx 91 \%)$ AT-rich region of at least 1 kb . This region contains a wide variety of AT-rich repeats of length $16-52 \mathrm{bp}$.
- Roughly one-third of alleles contain expanded repeats extending the length of the AT-rich region to $1-4 \mathrm{~kb}$.
- $\approx 1 \%$ of alleles-those that express $F R A 10 B$ fragility under BrdU treatment—are very long (5-20kb). These expanded $F R A 10 B$ alleles contain repeated variations of a 42 bp consensus motif; slight variations exist among the repeat units present within an individual and between individuals. Each expanded allele likely contains $>75$ repeat copies (based on total allele length and the assumption that expanded alleles are primarily comprised of $\approx 42 \mathrm{bp}$ repeats). Expanded alleles are highly unstable, exhibiting both intergenerational and somatic mutation.


### 8.2.2 Overview of approach to analyzing WGS data

In this work, we identified a new, much rarer genetically-induced anomaly: breakage at FRA10B in vivo, resulting in mosaic loss of $10 \mathrm{q} 25.2-10 \mathrm{qter}$ in normal blood DNA. We detected $\operatorname{del}(10 \mathrm{q})$ mosaicism of this form in 60 of 151,202 genotyped UK Biobank participants and 4 of 2,079 whole-genome-sequenced SSC participants, always on a low-frequency haplotype (rs118137427:G, MAF 5\%) at FRA10B.

To investigate the genomic structure of $F R A 10 B$ alleles implicated in $\operatorname{del}(10 \mathrm{q})$ mosaicism vs. normal alleles, we examined Illumina short-read sequencing data available for the WGS cohort (SSC). This task was challenging because of the repetitive, AT-rich sequence composition of the $F R A 10 B$ locus: the reads observed at $F R A 10 B$ likely depend on several factors including (i) the length of the $F R A 1 O B$ alleles present in each individual, (ii) technical variation (across sequencing libraries) in efficiency of capturing reads at very low GC fractions ( $\approx 10 \%$ ), and (iii) technical biases in sampling reads from repeat units with different GC compositions (most likely favoring reads covering repeat units with more G's and C's). In particular, despite the 37.8X median coverage of the WGS data, many samples exhibited extreme read dropout at FRA10B, with few or no reads aligning to the $F R A 1 O B$ locus.

These limitations precluded interrogation of full $F R A 10 B$ sequences: we were unable to infer total $F R A 10 B$ size from read counts (due to unknown extent of read dropout at $F R A 10 B$ ), and we were unable to infer relative fractions of constituent repeat unit variants within a $F R A 10 B$ allele (due to likely GC bias in sampling different repeats).

Instead, we undertook the following conservative analysis strategy: for each individual with at least 10 reads mapping to the $F R A 1 O B$ locus, we attempted to identify a primary repeat motif based
on assembling the available reads. Intuitively, each individual's primary motif indicates the "most represented" repeat unit within that individual (subject to potential GC bias). (In general, many different repeat units should be present in each FRAIOB allele based on the analysis of Hewett et al. [35].) We then compared these primary motifs to the reference sequence, ultimately identifying likely carriers of long variable number tandem repeat (VNTR) sequences with mutations away from the reference.

### 8.2.3 Identification of non-reference VNTR motifs in 26 individuals

To carry out the strategy outlined above, we first identified a 150bp target region (10:113002151113002300 , hg 19 ) at which $\operatorname{del}(10 \mathrm{q})$ samples exhibited deep read pileups. This region is a poly-AT region in hg 19, and the reference sequence contains three tandem repeats of a 40 bp motif (Extended Data Fig. 5a) at this locus. We used this region as "bait," counting the number of reads in each individual that aligned to the region (allowing for mismatches in alignment).

We identified 399 individuals with 10 or more reads mapping to the target region. For each individual, we attempted to assemble the reads of interest by performing an all-to-all pairwise gapfree alignment, finding the most-connected read, and pulling in other reads to form an assembly. We then evaluated the assemblies for repeating VNTR motifs. Most samples either did not assemble or contained only short VNTR motifs ( 15 bp or less) with small numbers of tandem repeats. For 102 samples, we identified 40bp VNTR motifs; 99 matched the hg 19 reference and the other 3 had distinct 1 bp differences. All of these 102 samples had moderate coverage ( 10 to 29 reads mapping to the target region).

For 26 samples from 14 whole-genome-sequenced families, we confidently identified a primary VNTR motif with length $38 \mathrm{bp}, 39 \mathrm{bp}$, 42bp, or 43 bp and evidence of three or more tandem repeat copies (Supplementary Table 16 and Extended Data Fig. 5a). Eleven samples had read counts greater than 100 at the target locus, with the highest over 1,000, suggesting very long repeat expansions (Supplementary Table 16). Our assemblies revealed a large range of diversity in VNTR sequences across individuals: we identified 12 distinct primary motifs, only one of which was shared among more than one family (VNTR-42-a, carried in families 11336, 11542, and 13777; families 11336 and 13777 contain the del(10q) individuals in the WGS cohort). No motifs exactly matched repeat units from ref. [35], although many were very similar (Extended Data Fig. 5a). The overall sequence diversity underscored the high mutability of the FRAIOB locus.

All 26 samples with high-confidence non-reference VNTR motifs carried the rs118137427:G low-frequency allele. Based on haplotype transmission within quartets, we identified 7 additional family members who shared haplotypes with the 26 high-confidence non-reference VNTR carriers. Examination of the k-mer composition of reads from these 7 individuals and the 26 high-confidence individuals showed that k-mer profiles clustered in families and by VNTR motifs almost perfectly, lending support to the accuracy of the VNTR assemblies we generated (Fig. S8.2-1). Family 13892
was the lone exception; one individual ( 09339 , a son) has a very different k -mer profile from his family members ( 09326 and 09330 ) who carry the same rs118137427:G haplotype. One possible explanation is intergenerational $F R A 10 B$ expansion, as observed by Hewett et al. [35].

### 8.2.4 Imputation of VNTRs into UK Biobank

We used Minimac3 [61] to impute non-reference VNTR motifs into UK Biobank individuals based on haplotype sharing at the FRA1OB locus (using the 26 high-confidence individuals as cases and excluding the 7 additional related individuals from the analysis). Although the VNTR motifs were estimated to collectively be present in just $0.7 \%$ of the UK Biobank cohort, they were imputed into 24 of 60 mosaic del(10q) individuals ( 16 with VNTR-42-a, 5 with VNTR-43-b, and 3 with VNTR-38-a; Extended Data Fig. 5b and Supplementary Table 7).

### 8.2.5 Possible models for $\operatorname{del}(10 q)$ mosaicism

While the above analyses strongly implicate FRA10B expanded alleles as the source of chromosomal breakage in individuals with mosaic loss of 10q25.2-10qter, the mechanism by which $\operatorname{del}(10 q)$ cells reach a detectable allelic fraction in whole blood DNA remains unclear. We can imagine three possible routes to $\operatorname{del}(10 q)$ mosaicism:

1. Mutation early in development.
2. Repeated mutation in many different cells.
3. Clonal expansion of a cell (or cells) that have lost 10q25-10qter.

The first two possibilities do not require clonal expansion of del(10q) cells, while the third would imply that loss of 10q25-10qter confers a proliferative advantage to blood cells.

We have limited ability to distinguish between these possible scenarios (which are also not mutually exclusive). Beyond the association we observe with FRA10B alleles, our only other observations on del $(10 \mathrm{q})$ individuals are the lack of an age bias, a sex bias toward female cases, and low to very low fractions of del(10q) cells (Fig. S4.2-1). Based on the last observation, we speculate that the second scenario-repeated mutation in many different cells, converging to a cell fraction of a few percent-may be most likely, but additional work will be necessary to resolve this question.


KMer
Figure S8.2-1. FRA10B read profiles cluster concordantly with primary motifs from VNTR assemblies. To assess the accuracy of the assembly procedure we used to identify VNTR motifs in WGS data, we analyzed k-mer profiles of reads mapping to $F R A 10 B$ in individuals we identified as probable carriers of non-reference VNTR motifs. For each individual of interest ( y -axis), we constructed a "barcode" based on 38 -mer representation at a set of informative 38 -mers (x-axis). This plot contains 3 reference individuals, 26 individuals we identified as high-confidence non-reference VNTR motif carriers, 7 family members of the 26 high-confidence individuals sharing their VNTR haplotypes (indicated with asterisks), and 3 additional medium-confidence VNTR motif carriers (indicated with double asterisks). (The last three individuals only have evidence for two tandem copies of the repeat unit based on 11-12 reads, and they do not carry the rs118137427:G minor allele present in all other non-reference VNTR carriers.)

## 9 Analysis of biased $\mathbf{X}$ chromosome loss

In addition to performing standard GWAS on mosaic status, we also searched our detected mCAs for a different type of association: shift in allelic balance in favor of one allele versus the other in heterozygous individuals (analogous to allele-specific expression). We were well-powered to run this analysis on female chromosome X owing to the high frequency of X loss (Fig. 1), and to further increase association power, we performed X loss association analyses using an expanded set of 3,462 likely X loss calls at an FDR of 0.1 . We observed a striking association $\left(P=6.6 \times 10^{-27}\right.$, 1.9:1 bias in the lost haplotype) at Xp11.1 near $D X Z 1$ and a weaker association ( $P=1.0 \times 10^{-9}, 1.5: 1$ bias in the lost haplotype) at Xq23 near DXZ4 (Table 1, Fig. S9-1, and Supplementary Table 9). At both loci, we also observed nominal associations ( $P=1 \times 10^{-3}$ ) between allele count and X loss (Table 1). The Xp 11.1 and Xq 23 bias signals appear to be independent ( $2.7: 1$ bias when heterozygous risk haplotypes are in phase and 1.2:1 bias when out of phase). We initially suspected that these observations could be explained by biased X chromosome inactivation (XCI) [39], especially given the role of Xp 11.1 and Xp 23 in XCI [82], but we did not find any evidence of biased XCI in GEUVADIS RNA-seq data [64] (Supplementary Table 10). Interestingly, we observed weak evidence that the lead SNP rs2942875 at Xp11.1 appeared to have similar effects on gain of X (Supplementary Table 9), suggesting a mechanism involving X missegregation, but larger sample sizes will be required to investigate this possibility; we only called 29 likely X gains at FDR 0.1.


Figure S9-1. Manhattan plot of cis associations with biased female chrX loss. For each chrX SNP, a binomial test was run on heterozygous individuals among $n=3,220$ females with X loss calls at a false discovery threshold of 0.10 . The gaps in the plot correspond to the chrX centromere and X-transposed region (XTR); we masked the latter from our analyses, following Laurie et al. [2].

## References

1. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics 44, 651-658 (2012).
2. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nature Genetics 44, 642-650 (2012).
3. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine 371, 2477-2487 (2014).
4. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine 371, 2488-2498 (2014).
5. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine 20, 1472-1478 (2014).
6. McKerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of agerelated clonal hemopoiesis. Cell Reports 10, 1239-1245 (2015).
7. Machiela, M. J. et al. Characterization of large structural genetic mosaicism in human autosomes. American Journal of Human Genetics 96, 487-497 (2015).
8. Vattathil, S. \& Scheet, P. Extensive hidden genomic mosaicism revealed in normal tissue. American Journal of Human Genetics 98, 571-578 (2016).
9. Young, A. L., Challen, G. A., Birmann, B. M. \& Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nature Communications 7 (2016).
10. Forsberg, L. A., Gisselsson, D. \& Dumanski, J. P. Mosaicism in health and disease-clones picking up speed. Nature Reviews Genetics 18, 128-142 (2017).
11. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742-752 (2017).
12. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. New England Journal of Medicine 377, 111-121 (2017).
13. Acuna-Hidalgo, R. et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. American Journal of Human Genetics 101, 50-64 (2017).
14. Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genetics 17, 79-83 (1997).
15. Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genetics 41, 446-449 (2009).
16. Kilpivaara, O. et al. A germline $J A K 2$ SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nature Genetics 41, 455-459 (2009).
17. Olcaydu, D. et al. A common $J A K 2$ haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genetics 41, 450-454 (2009).
18. Koren, A. et al. Genetic variation in human DNA replication timing. Cell 159, 1015-1026 (2014).
19. Zhou, W. et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nature Genetics 48, 563-568 (2016).
20. Hinds, D. A. et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128, 1121-1128 (2016).
21. Wright, D. J. et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nature Genetics 49, 674-679 (2017).
22. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine 12, 1-10 (2015).
23. Loh, P.-R., Palamara, P. F. \& Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. Nature Genetics 48, 811-816 (2016).
24. Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics 48, 1443-1448 (2016).
25. Machiela, M. J. et al. Mosaic chromosome 20q deletions are more frequent in the aging population. Blood Advances 1, 380-385 (2017).
26. Fischbach, G. D. \& Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192-195 (2010).
27. Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nature Genetics 50, 727-736 (2018).
28. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899-905 (2010).
29. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948-962 (2013).
30. Machiela, M. J. et al. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications 7 (2016).
31. Sinclair, E. J., Potter, A. M., Watmore, A. E., Fitchett, M. \& Ross, F. Trisomy 15 associated with loss of the Y chromosome in bone marrow: a possible new aging effect. Cancer Genetics and Cytogenetics 105, 20-23 (1998).
32. Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525-530 (2015).
33. Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519-524 (2015).
34. Sutherland, G., Baker, E. \& Seshadri, R. Heritable fragile sites on human chromosomes. V. A new class of fragile site requiring BrdU for expression. American Journal of Human Genetics 32, 542-548 (1980).
35. Hewett, D. R. et al. FRA1OB structure reveals common elements in repeat expansion and chromosomal fragile site genesis. Molecular Cell 1, 773-781 (1998).
36. Richards, R. I. \& Sutherland, G. R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709-712 (1992).
37. Gurney, A. L., Carver-Moore, K., de Sauvage, F. J. \& Moore, M. W. Thrombocytopenia in c-mpl-deficient mice. Science 265, 1445-1448 (1994).
38. Tefferi, A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24, 1128-1138 (2010).
39. Tukiainen, T. et al. Landscape of $X$ chromosome inactivation across human tissues. Nature 550, 244-248 (2017).
40. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis. Nature Genetics 47, 1385-1392 (2015).
41. Oddsson, A. et al. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia 28, 1371-1374 (2014).
42. Stacey, S. N. et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nature Genetics 43, 1098-1103 (2011).
43. Rawstron, A. C. et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. New England Journal of Medicine 359, 575-583 (2008).
44. Landgren, O. et al. B-cell clones as early markers for chronic lymphocytic leukemia. New England Journal of Medicine 360, 659-667 (2009).
45. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714-726 (2013).
46. Ojha, J. et al. Monoclonal B-cell lymphocytosis is characterized by mutations in CLL putative driver genes and clonal heterogeneity many years before disease progression. Leukemia 28, 2395-2398 (2014).
47. Berndt, S. I. et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nature Communications 7 (2016).
48. O’Keefe, C., McDevitt, M. A. \& Maciejewski, J. P. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood 115, 2731-2739 (2010).
49. Chase, A. et al. Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus. Leukemia 29, 2069-2074 (2015).
50. Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330, 94-97 (2010).
51. Peiffer, D. A. et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Research 16, 1136-1148 (2006).
52. Diskin, S. J. et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Research 36, e126 (2008).
53. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994-1007 (2012).
54. Vattathil, S. \& Scheet, P. Haplotype-based profiling of subtle allelic imbalance with SNP arrays. Genome Research 23, 152-158 (2013).
55. Genovese, G., Leibon, G., Pollak, M. R. \& Rockmore, D. N. Improved IBD detection using incomplete haplotype information. BMC Genetics 11, 58 (2010).
56. Olshen, A. B., Venkatraman, E., Lucito, R. \& Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557-572 (2004).
57. Pique-Regi, R., Cáceres, A. \& González, J. R. R-gada: a fast and flexible pipeline for copy number analysis in association studies. BMC Bioinformatics 11, 380 (2010).
58. Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nature Communications 6 (2015).
59. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 1-16 (2015).
60. Gusev, A. et al. Whole population, genome-wide mapping of hidden relatedness. Genome Research 19, 318-326 (2009).
61. Das, S. et al. Next-generation genotype imputation service and methods. Nature Genetics 48, 1284-1287 (2016).
62. Loh, P.-R. et al. Efficient Bayesian mixed model analysis increases association power in large cohorts. Nature Genetics 47, 284-290 (2015).
63. Lee, S. H., Wray, N. R., Goddard, M. E. \& Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. American Journal of Human Genetics 88, 294-305 (2011).
64. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511 (2013).
65. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. \& Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biology 16, 195 (2015).
66. Turner, J. J. et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood 116, e90-e98 (2010).
67. Arber, D. A. et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405 (2016).
68. Chatterjee, N., Shi, J. \& García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nature Reviews Genetics 17, 392-406 (2016).
69. Dumanski, J. P. et al. Smoking is associated with mosaic loss of chromosome Y. Science 347, 81-83 (2015).
70. Affymetrix, Inc. Axiom® genotyping solution data analysis guide (2016). URL http://media.affymetrix.com/support/downloads/manuals/axiom_ genotyping_solution_analysis_guide.pdf.
71. Quinlan, A. R. \& Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).
72. Bock, C., Walter, J., Paulsen, M. \& Lengauer, T. CpG island mapping by epigenome prediction. PLOS Computational Biology 3, e110 (2007).
73. Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. American Journal of Human Genetics 83, 132-135 (2008).
74. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75-81 (2015).
75. Lee, D.-H. et al. A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nature Structural \& Molecular Biology 17, 365-372 (2010).
76. Chen, D. et al. RYBP stabilizes p53 by modulating MDM2. EMBO Reports 10, 166-172 (2009).
77. Weiss, L. A. et al. Association between microdeletion and microduplication at 16 p 11.2 and autism. New England Journal of Medicine 358, 667-675 (2008).
78. Shinawi, M. et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioral problems, dysmorphism, epilepsy, and abnormal head size. Journal of Medical Genetics 47, 332-341 (2010).
79. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363-367 (2012).
80. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
81. Sutherland, G. R. Heritable fragile sites on human chromosomes. IX. Population cytogenetics and segregation analysis of the BrdU-requiring fragile site at 10q25. American Journal of Human Genetics 34, 753-756 (1982).
82. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680 (2014).
83. Di Bernardo, M. C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nature Genetics 40, 1204-1210 (2008).
84. Slager, S. L. et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood 117, 1911-1916 (2011).
85. Slager, S. L. et al. Common variation at 6 p 21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood 120, 843-846 (2012).
86. Berndt, S. I. et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nature Genetics 45, 868-876 (2013).
87. Speedy, H. E. et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nature Genetics 46, 56-60 (2014).
88. Tapper, W. et al. Genetic variation at MECOM, TERT, JAK2 and HBSIL-MYB predisposes to myeloproliferative neoplasms. Nature Communications 6 (2015).
89. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nature Genetics 45, 422-427 (2013).
90. Machiela, M. J. \& Chanock, S. J. LDlink: a web-based application for exploring populationspecific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555-3557 (2015).

Supplementary Table 1. Number of mCAs detected per chromosome.

| Chromosome | $N_{\text {loss }}$ | $N_{\text {CNN-LOH }}$ | $N_{\text {gain }}$ | $N_{\text {undetermined }}$ | $N_{\text {total }}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| chr1 | 29 | 318 | 17 | 134 | 498 |
| chr2 | 66 | 56 | 10 | 48 | 180 |
| chr3 | 18 | 53 | 41 | 63 | 175 |
| chr4 | 47 | 64 | 8 | 41 | 160 |
| chr5 | 49 | 40 | 24 | 38 | 151 |
| chr6 | 32 | 68 | 6 | 64 | 170 |
| chr7 | 70 | 43 | 5 | 40 | 158 |
| chr8 | 22 | 35 | 42 | 44 | 143 |
| chr9 | 19 | 210 | 38 | 78 | 345 |
| chr10 | 70 | 29 | 5 | 31 | 135 |
| chr11 | 98 | 257 | 1 | 105 | 461 |
| chr12 | 28 | 67 | 156 | 95 | 346 |
| chr13 | 177 | 111 | 0 | 73 | 361 |
| chr14 | $51^{*}$ | 223 | 38 | 135 | 447 |
| chr15 | 14 | 121 | 59 | 93 | 287 |
| chr16 | 43 | 142 | 2 | 53 | 240 |
| chr17 | 66 | 112 | 37 | 89 | 304 |
| chr18 | 14 | 20 | 57 | 40 | 131 |
| chr19 | 6 | 90 | 17 | 75 | 188 |
| chr20 | 140 | 55 | 3 | 29 | 227 |
| chr21 | 20 | 35 | 31 | 67 | 153 |
| chr22 | $39^{*}$ | 88 | 62 | 113 | 302 |
| All autosomes | 1118 | 2237 | 659 | 1548 | 5562 |
| Female chrX | 1862 | 28 | 24 | 866 | 2780 |

*Deletions on chr 14 and chr22 include $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination events ( 25 events on chr14 and 25 events on chr22).

Supplementary Table 2. Distribution of the number of detected somatic autosomal mCAs per individual.

| mCA count | Frequency |
| ---: | ---: |
| 0 | 146313 |
| 1 | 4448 |
| 2 | 295 |
| 3 | 103 |
| 4 | 27 |
| 5 | 7 |
| 6 | 4 |
| 7 | 0 |
| 8 | 2 |
| 9 | 1 |
| 10 | 0 |
| 11 | 1 |
| 12 | 1 |

Most individuals with several detected mCAs have prevalent or incident cancers.

Supplementary Table 3. Co-occurrence enrichment among mCAs.

| mCA1 | mCA2 | $P$ | OR (95\% CI) |
| ---: | ---: | :---: | :---: |
| $3+$ | $12+$ | $3.1 \times 10^{-10}$ | $170(65-444)$ |
| $3 \mathrm{p}-$ | $13 \mathrm{q}-$ | $1.4 \times 10^{-7}$ | $410(105-1598)$ |
| $3+$ | $13 \mathrm{q}-$ | $7.1 \times 10^{-8}$ | $120(42-344)$ |
| $3+$ | $18+$ | $2.7 \times 10^{-18}$ | $829(345-1991)$ |
| $4+$ | $18+$ | $1.3 \times 10^{-9}$ | $2361(515-10832)$ |
| $8+$ | $9+$ | $1.1 \times 10^{-7}$ | $381(112-1298)$ |
| $12+$ | $13 \mathrm{q}-$ | $1.5 \times 10^{-8}$ | $41(18-94)$ |
| $12+$ | $18+$ | $1.1 \times 10^{-33}$ | $473(253-884)$ |
| $12+$ | $19+$ | $8.9 \times 10^{-34}$ | $3331(1061-10457)$ |
| $12+$ | $22 \mathrm{q}-$ | $4.5 \times 10^{-8}$ | $135(47-388)$ |
| $13 \mathrm{q}-$ | $13 \mathrm{q}=$ | $4.1 \times 10^{-67}$ | $208(137-313)$ |
| $13 \mathrm{q}-$ | $14 \mathrm{q}-$ | $3.7 \times 10^{-19}$ | $288(135-616)$ |
| $13 \mathrm{q}=$ | $14 \mathrm{q}-$ | $3.2 \times 10^{-6}$ | $120(36-396)$ |
| $13 \mathrm{q}-$ | $22 \mathrm{q}-$ | $6.3 \times 10^{-8}$ | $124(43-356)$ |
| $13 \mathrm{q}=$ | $22 \mathrm{q}-$ | $2.1 \times 10^{-6}$ | $139(42-460)$ |
| $13 \mathrm{q}-$ | $\mathrm{X}+$ | $8.8 \times 10^{-10}$ | $403(130-1255)$ |
| $17 \mathrm{p}-$ | $21 \mathrm{q}-$ | $2.7 \times 10^{-12}$ | $1919(565-6522)$ |
| $18+$ | $19+$ | $3.7 \times 10^{-21}$ | $2671(953-7489)$ |

We report pairs of mCA types (grouped by chromosome arm and copy number) with significant co-occurrence ( $P<8 \times 10^{-6}$, Fisher's exact test with Bonferroni correction, and at least three individuals carrying both events). (We subdivided loss and CNN-LOH events by p-arm vs. q-arm, but we did not subdivide gain events by arm because most gain events are whole-chromosome trisomies; e.g., " $3+$ " combines all gains-partial or complete-on chromosome 3.) We excluded individuals with $>3$ detected mCAs from these calculations to prevent individuals with large numbers of mCAs (typically cancer cases) from dominating the results, leaving $n=151,159$ individuals. Co-occurrence of $13 \mathrm{q}-$ and $13 \mathrm{q}=$ events (i.e., 13 q 14 deletion and 13 q CNN-LOH, a frequent combination in chronic lymphocytic leukemia) was computed using a slightly different procedure than the rest of the table because these events affect both homologous copies of chr13, creating a special case not considered by our detection algorithm (which calls only 13 q CNN-LOH in this circumstance). Specifically, we called 13q14 deletions based on mean total intensity (LRR) in 13q14 ( $50.6-51.6 \mathrm{Mb}$ ); we then computed co-occurrence with 13 q CNN-LOH events.

Supplementary Table 4. Fraction of individuals with detected mCAs as a function of age.

| Age range | $\%$ with autosomal event | $\%$ of females with chrX event |
| :---: | :---: | :---: |
| $<45$ | $1.7 \%(0.1 \%)$ | $0.9 \%(0.1 \%)$ |
| $45-50$ | $2.0 \%(0.1 \%)$ | $1.1 \%(0.1 \%)$ |
| $50-55$ | $2.3 \%(0.1 \%)$ | $1.7 \%(0.1 \%)$ |
| $55-60$ | $3.0 \%(0.1 \%)$ | $3.0 \%(0.1 \%)$ |
| $60-65$ | $4.0 \%(0.1 \%)$ | $4.7 \%(0.2 \%)$ |
| $>65$ | $4.9 \%(0.1 \%)$ | $7.2 \%(0.2 \%)$ |

This table provides numerical data plotted in Fig. 2d.

## Supplementary Table 5. Age and sex distributions of individuals with detected mCAs on each chromosome.

| chr | Loss events |  |  |  | CNN-LOH events |  |  |  | Gain events |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p-arm |  | q-arm |  | p-arm |  | q-arm |  |  |  |
|  | Mean age | Frac. male |
| 1 | 61.0 (1.9) | 0.54 (0.14) | 58.8 (1.8) | 0.69 (0.12) | 59.5 (0.5) | 0.49 (0.04) | 59.5 (0.6) | 0.50 (0.04) | 61.4 (1.5) | 0.41 (0.12) |
| 2 | 62.0 (0.8) | 0.40 (0.07) | 61.0 (2.3) | 0.62 (0.14) | 60.6 (1.1) | 0.38 (0.09) | 58.0 (1.3) | 0.26 (0.09) | 54.7 (2.7) | 0.40 (0.16) |
| 3 | 57.1 (2.3) | 0.50 (0.15) | - | - | 59.8 (1.6) | 0.45 (0.11) | 59.1 (1.6) | 0.47 (0.09) | 61.5 (1.0) | 0.74 (0.07) |
| 4 | - | - | 61.8 (1.0) | 0.56 (0.08) | 53.3 (2.7) | 0.56 (0.18) | 62.4 (0.9) | 0.50 (0.07) | 63.2 (2.3) | 0.62 (0.18) |
| 5 | - | - | 60.3 (1.1) | 0.49 (0.08) | - | - | 57.9 (1.4) | 0.50 (0.08) | 61.5 (1.2) | 0.57 (0.11) |
| 6 | 64.4 (1.3) | 0.17 (0.17) | 60.8 (1.5) | 0.58 (0.10) | 56.2 (1.0) | 0.43 (0.07) | 58.3 (2.3) | 0.47 (0.13) | 57.7 (3.4) | 0.50 (0.22) |
| 7 | 61.4 (2.3) | 0.25 (0.16) | 62.0 (0.8) | 0.56 (0.07) | 61.4 (1.5) | 0.50 (0.14) | 57.6 (1.9) | 0.62 (0.10) | 59.1 (4.6) | 0.20 (0.20) |
| 8 | 61.2 (2.0) | 0.47 (0.13) | 63.5 (1.1) | 0.71 (0.18) | - | - | 57.2 (1.2) | 0.48 (0.09) | 61.2 (1.0) | 0.50 (0.08) |
| 9 | - | - | 59.1 (2.6) | 0.47 (0.13) | 59.7 (0.7) | 0.56 (0.05) | 59.3 (0.8) | 0.51 (0.05) | 61.2 (1.1) | 0.55 (0.08) |
| 10 | - | - | 56.8 (1.0) | 0.20 (0.05) | 61.2 (2.8) | 0.33 (0.17) | 58.8 (1.9) | 0.30 (0.11) | 60.6 (4.6) | 0.40 (0.24) |
| 11 | 57.5 (2.5) | 0.54 (0.14) | 62.0 (0.7) | 0.60 (0.05) | 58.3 (0.6) | 0.54 (0.04) | 61.7 (0.6) | 0.55 (0.05) | - | - |
| 12 | 62.0 (1.9) | 0.25 (0.13) | 60.0 (1.5) | 0.47 (0.13) | 58.2 (2.7) | 0.42 (0.15) | 60.5 (1.0) | 0.47 (0.07) | 62.4 (0.5) | 0.54 (0.04) |
| 13 | - | - | 61.5 (0.4) | 0.64 (0.04) | - | - | 59.5 (0.8) | 0.59 (0.05) | - | - |
| 14 | - | - | 61.1 (0.8) | 0.72 (0.07) | - | - | 59.9 (0.5) | 0.46 (0.03) | 62.9 (0.7) | 0.61 (0.08) |
| 15 | - | - | 62.5 (2.0) | 0.64 (0.13) | - | - | 59.5 (0.7) | 0.51 (0.05) | 65.7 (0.4) | 0.83 (0.05) |
| 16 | 56.1 (1.4) | 0.28 (0.08) | 63.2 (1.5) | 0.71 (0.13) | 59.1 (0.9) | 0.54 (0.06) | 60.1 (0.9) | 0.48 (0.06) | - | - |
| 17 | 61.1 (1.0) | 0.52 (0.07) | 59.5 (1.9) | 0.56 (0.13) | 58.5 (1.6) | 0.41 (0.11) | 58.1 (0.8) | 0.44 (0.05) | 60.3 (1.2) | 0.46 (0.08) |
| 18 | 55.5 (2.9) | 0.67 (0.21) | 61.2 (2.6) | 0.50 (0.22) | - | - | 61.5 (1.7) | 0.35 (0.12) | 62.2 (0.8) | 0.70 (0.06) |
| 19 | 60.8 (2.6) | 0.80 (0.20) | - | - | 59.2 (1.2) | 0.43 (0.08) | 60.6 (1.0) | 0.53 (0.07) | 60.9 (1.5) | 0.76 (0.11) |
| 20 | - | - | 62.1 (0.6) | 0.70 (0.04) | 59.1 (2.6) | 0.45 (0.16) | 57.9 (1.3) | 0.38 (0.08) | - | - |
| 21 | - | - | 59.2 (1.8) | 0.37 (0.11) | - | - | 57.4 (1.5) | 0.56 (0.09) | 60.8 (1.1) | 0.81 (0.07) |
| 22 | - | - | 62.8 (0.7) | 0.66 (0.08) | - | - | 60.7 (0.8) | 0.36 (0.05) | 61.2 (0.8) | 0.52 (0.06) |
| X | 60.3 (2.3) | - | 59.0 (2.5) | - | 61.4 (3.0) | - | 60.3 (1.1) | - | 56.8 (2.0) | - |

This table provides numerical data plotted in Fig. 2e. (Events detected in fewer than 15 individuals and female chrX events were excluded from Fig. 2e for clarity, and events detected in fewer than 5 individuals are excluded here.)

## Supplementary Table 6. Enrichment of mCAs in individuals with anomalous (top 1\%) blood indices.

| mCA | Blood index | $P$-value (one-sided Fisher) | $q$-value | OR (95\% CI) |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{p}-$ | Lymphocyte \# | 0.0027 | 0.047 | 33.1 (6.7-163.9) |
| 1p- | Lymphocyte \% | 0.0027 | 0.047 | 33.1 (6.7-163.9) |
| $2 \mathrm{p}=$ | Monocyte \# | 0.0027 | 0.047 | 11.9 (3.6-39.5) |
| 3p- | Lymphocyte \# | 0.002 | 0.038 | 39.7 (7.7-204.6) |
| 3p- | Lymphocyte \% | 0.002 | 0.038 | 39.7 (7.7-204.6) |
| 3+ | Lymphocyte \# | 3.6e-6 | 0.00015 | 26.1 (9.7-70.1) |
| 3+ | Lymphocyte \% | 3.6e-6 | 0.00015 | 26.1 (9.7-70.1) |
| $4 \mathrm{q}=$ | Monocyte \% | $2.3 \mathrm{e}-7$ | $1.2 \mathrm{e}-5$ | 19.3 (8.6-43.5) |
| $7 \mathrm{q}-$ | Lymphocyte \# | 3.3e-5 | 0.00097 | 15.5 (6.0-39.9) |
| $7 \mathrm{q}-$ | Lymphocyte \% | 3.3e-5 | 0.00097 | 15.5 (6.0-39.9) |
| $9 \mathrm{p}=$ | Red \# | $1.1 \mathrm{e}-13$ | $7.6 \mathrm{e}-12$ | 17.7 (10.2-30.6) |
| $9 \mathrm{p}=$ | Hematocrit | $3 \mathrm{e}-11$ | $2 \mathrm{e}-9$ | 14.9 (8.3-26.8) |
| $9 \mathrm{p}=$ | RBC dist. width | $2.8 \mathrm{e}-16$ | $2.5 \mathrm{e}-14$ | 20.5 (12.1-34.7) |
| $9 \mathrm{p}=$ | Platelet \# | $1.9 \mathrm{e}-32$ | $4.8 \mathrm{e}-30$ | 39.3 (25.3-61.0) |
| $9 \mathrm{p}=$ | Platelet crit | $4.7 \mathrm{e}-34$ | $1.6 \mathrm{e}-31$ | 41.3 (26.7-63.8) |
| $9 \mathrm{p}=$ | Platelet dist. width | $7 \mathrm{e}-5$ | 0.0019 | 7.5 (3.5-16.2) |
| 9+ | Neutrophil \# | $1.1 \mathrm{e}-5$ | 0.0004 | 19.9 (7.6-52.0) |
| 9+ | Neutrophil \% | 0.00022 | 0.0054 | 15.3 (5.3-43.8) |
| 9+ | RBC dist. width | $1.1 \mathrm{e}-5$ | 0.0004 | 19.9 (7.6-52.0) |
| 9+ | Platelet \# | 0.00022 | 0.0054 | 15.3 (5.3-43.8) |
| 11q- | Lymphocyte \# | $4.2 \mathrm{e}-8$ | 2.3e-6 | 14.5 (7.2-29.2) |
| 11q- | Lymphocyte \% | 8.1e-5 | 0.0021 | 9.2 (4.0-21.2) |
| 11q- | Platelet dist. width | $8.1 \mathrm{e}-5$ | 0.0021 | 9.2 (4.0-21.2) |
| 11q= | Lymphocyte \# | 0.0001 | 0.0026 | 7.0 (3.3-15.2) |
| 12+ | Lymphocyte \# | $2.2 \mathrm{e}-20$ | $3.2 \mathrm{e}-18$ | 22.2 (13.8-35.7) |
| 12+ | Lymphocyte \% | $3.7 \mathrm{e}-15$ | $3 \mathrm{e}-13$ | 17.2 (10.3-28.9) |
| $13 \mathrm{q}-$ | Lymphocyte \# | 3.3e-117 | $3.3 \mathrm{e}-114$ | 163.4 (113.3-235.7) |
| $13 \mathrm{q}-$ | Lymphocyte \% | $8 \mathrm{e}-96$ | $4 \mathrm{e}-93$ | 116.3 (81.3-166.4) |
| 13q- | Basophil \# | $4.2 \mathrm{e}-10$ | $2.6 \mathrm{e}-8$ | 11.8 (6.6-21.0) |
| 13q- | Basophil \% | 0.0016 | 0.03 | 5.1 (2.2-11.6) |
| $13 \mathrm{q}-$ | Monocyte \# | 3.7e-5 | 0.001 | 6.9 (3.4-14.2) |
| $13 \mathrm{q}=$ | Lymphocyte \# | $5.2 \mathrm{e}-17$ | $5.2 \mathrm{e}-15$ | 23.0 (13.6-39.1) |
| $13 q=$ | Lymphocyte \% | $2.5 \mathrm{e}-14$ | $1.9 \mathrm{e}-12$ | 19.7 (11.3-34.4) |
| 14 q - | Lymphocyte \# | $6.4 \mathrm{e}-20$ | $7.1 \mathrm{e}-18$ | 73.7 (36.9-147.3) |
| 14q- | Lymphocyte \% | $6.4 \mathrm{e}-20$ | $7.1 \mathrm{e}-18$ | 73.7 (36.9-147.3) |
| $14 \mathrm{q}-$ | Basophil \# | 0.00032 | 0.0075 | 13.7 (4.8-39.0) |
| $14 q=$ | Monocyte \% | 0.00085 | 0.018 | 4.3 (2.1-8.7) |
| 16p- | Monocyte \% | 0.0022 | 0.04 | 12.9 (3.9-43.2) |
| 16q- | Lymphocyte \# | 4.6e-6 | 0.00018 | 49.7 (14.9-165.1) |
| 16q- | Lymphocyte \% | $4.6 \mathrm{e}-6$ | 0.00018 | 49.7 (14.9-165.1) |
| $16 \mathrm{p}=$ | Monocyte \% | 0.0009 | 0.019 | 7.2 (2.9-17.9) |
| 17p- | Lymphocyte \# | 4.6e-9 | $2.7 \mathrm{e}-7$ | 25.7 (11.8-56.0) |
| 17p- | Lymphocyte \% | 0.00062 | 0.013 | 11.3 (4.0-32.0) |
| 17q- | Platelet dist. width | 0.00033 | 0.0076 | 27.1 (7.5-97.1) |
| 18+ | Lymphocyte \# | 0.00056 | 0.012 | 11.7 (4.1-33.0) |
| 19+ | Lymphocyte \# | 6.6e-6 | 0.00024 | 44.1 (13.6-143.5) |
| 19+ | Lymphocyte \% | 0.00026 | 0.0063 | 29.8 (8.2-108.3) |
| 20q- | Neutrophil \% | 0.001 | 0.02 | 5.6 (2.4-12.7) |
| 20q- | RBC dist. width | $2 \mathrm{e}-5$ | 0.00062 | 7.6 (3.7-15.6) |
| 20q- | Platelet dist. width | 0.001 | 0.02 | 5.6 (2.4-12.7) |
| 22q- | Lymphocyte \# | $1.6 \mathrm{e}-31$ | $3.2 \mathrm{e}-29$ | 190.7 (88.5-410.9) |
| 22q- | Lymphocyte \% | $5.5 \mathrm{e}-25$ | $9.1 \mathrm{e}-23$ | 123.3 (59.2-256.8) |
| 22+ | Lymphocyte \# | $5 \mathrm{e}-8$ | 2.6e-6 | 18.1 (8.5-38.5) |
| 22+ | Lymphocyte \% | $1.4 \mathrm{e}-5$ | 0.00044 | 13.0 (5.5-30.4) |
| -X | Lymphocyte \# | $1.5 \mathrm{e}-6$ | 7.1e-5 | 2.4 (1.8-3.4) |
| -X | Lymphocyte \% | 3.7e-6 | 0.00015 | 2.4 (1.7-3.3) |

This table provides numerical data plotted in Fig. 2f. Mosaic chromosomal alterations significantly enriched (at an FDR threshold of 0.05 ) in individuals with anomalous blood indices (top $1 \%$ of $n=144,637$ self-reported white individuals) are reported. Events were grouped by chromosome and copy number, with loss and CNN-LOH events subdivided by p-arm vs. q-arm. (We did not subdivide gain events by arm because most gain events are whole-chromosome trisomies; e.g., " $3+$ " combines all gains-partial or complete-on chromosome 3.)

## Supplementary Table 7. Association of FRA10B variable number tandem repeat motifs with breakage at 10q25.2.

(a) Variable number tandem repeats imputed into UK Biobank

| Variant | MAF | \#del $(10 \mathrm{q})$ | $P$ | Imputation $R^{2}$ |
| :--- | :--- | ---: | :--- | :--- |
| VNTR-38-a | 0.0007 | $3 / 60$ | $5 \times 10^{-5}$ | 0.55 |
| VNTR-39-a | 0.0000 | $0 / 60$ | 0.5 | 0.16 |
| VNTR-42-a | 0.0010 | $16 / 60$ | $3 \times 10^{-27}$ | 0.64 |
| VNTR-42-b | 0.0001 | $0 / 60$ | 0.5 | 0.26 |
| VNTR-42-c | 0.0002 | $0 / 60$ | 0.5 | 0.79 |
| VNTR-42-d | 0.0001 | $0 / 60$ | 0.5 | 0.63 |
| VNTR-42-e | 0.0000 | $0 / 60$ | 0.5 | 0.15 |
| VNTR-43-a | 0.0003 | $0 / 60$ | 0.5 | 0.35 |
| VNTR-43-b | 0.0027 | $5 / 60$ | $9 \times 10^{-6} 6$ | 0.64 |
| VNTR-43-c | 0.0004 | $0 / 60$ | 0.5 | 0.58 |
| VNTR-43-d | 0.0003 | $0 / 60$ | 0.5 | 0.75 |
| VNTR-43-e | 0.0000 | $0 / 60$ | 0.5 | 0.14 |

(b) Lead associated SNPs typed or imputed in UK Biobank

| Variant | MAF | \#del(10q) | $P$ | INFO |
| :--- | :--- | ---: | :--- | :--- |
| rs118137427 | 0.0527 | $60 / 60$ | $6 \times 10^{-42}$ | 1.000 (typed) |
| rs758889647 | 0.0015 | $13 / 60$ | $4 \times 10^{-21}$ | 0.695 |

Results are from Fisher's exact test on $n=120,664$ individuals. All 12 high-confidence non-reference VNTR motifs we identified (Extended Data Fig. 5a,b and Supplementary Note 8) occur on the rs118137427:G haplotype background, which is carried by all chromosomes with detected mosaic breakage at 10q25.2. VNTR-42-a, carried by the four del(10q) individuals in the WGS cohort, is well-tagged by the rare rs758889647:A allele and imputes into 16 of 60 UK
Biobank del $(10 q)$ individuals. VNTR-43-b imputes into five del(10q) individuals, and VNTR-38-a imputes into an IBD cluster of three del(10q) individuals (Extended Data Fig. 5a,b).

Supplementary Table 8. SNPs at MPL and ATM associated with cis somatic CNN-LOH at $p<\mathbf{1 0}^{-7}$.

| SNP | hg19 coordinates | Alleles | RAF | $P$ | OR (95\% CI) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| MPL locus: associations with chr1p CNN-LOH |  |  |  |  |  |
| rs543652228 | $1: 43640972$ | A/G | 0.0003 | $2.4 \times 10^{-9}$ | $51(22-118)$ |
| rs777132997 | $1: 43669098$ | A/G | 0.0002 | $2.0 \times 10^{-10}$ | $79(34-187)$ |
| rs757080968 | $1: 43720418$ | C/G | 0.0002 | $2.6 \times 10^{-10}$ | $76(32-178)$ |
| rs547321640 | $1: 43752900$ | T/C | 0.0002 | $1.0 \times 10^{-8}$ | $71(28-180)$ |
| rs538358508 | $1: 43753105$ | T/G | 0.0002 | $1.0 \times 10^{-8}$ | $71(28-180)$ |
| rs549761468 | $1: 43788667$ | C/T | 0.0002 | $2.1 \times 10^{-10}$ | $79(34-187)$ |
| rs143549194 | $1: 43815673$ | G/T | 0.0015 | $2.1 \times 10^{-8}$ | $14(7-27)$ |
| rs369156948 | $1: 43817942$ | C/T | 0.0001 | $7.3 \times 10^{-8}$ | $103(35-300)$ |
| rs576674585 | $1: 43892277$ | A/C | 0.0001 | $4.9 \times 10^{-9}$ | $83(32-214)$ |
| rs558677971 | $1: 43895592$ | G/A | 0.0002 | $2.4 \times 10^{-8}$ | $59(23-149)$ |
| rs566497062 | $1: 43897662$ | C/T | 0.0002 | $2.4 \times 10^{-8}$ | $59(23-149)$ |
| rs143305686 | $1: 44134295$ | A/G | 0.0018 | $1.7 \times 10^{-12}$ | $17(10-30)$ |
| rs773168056 | $1: 44156366$ | A/G | 0.0003 | $4.2 \times 10^{-9}$ | $46(20-106)$ |
| rs182971382 | $1: 44167774$ | A/G | 0.0003 | $3.0 \times 10^{-11}$ | $63(29-139)$ |
| rs554498272 | $1: 44190215$ | G/A | 0.0001 | $4.8 \times 10^{-11}$ | $103(43-248)$ |
| rs765697775 | $1: 44546545$ | C/T | 0.0006 | $9.5 \times 10^{-15}$ | $41(22-76)$ |
| rs540740393 | $1: 45126775$ | C/A | 0.0018 | $3.1 \times 10^{-10}$ | $15(8-27)$ |
| rs553066968 | $1: 45129752$ | A/T | 0.0019 | $5.9 \times 10^{-10}$ | $14(8-26)$ |
| rs572698005 | $1: 45129772$ | C/T | 0.0019 | $5.9 \times 10^{-10}$ | $14(8-26)$ |
| rs565464974 | $1: 45170759$ | G/A | 0.0009 | $2.4 \times 10^{-13}$ | $30(16-55)$ |
| rs748989559 | $1: 45173569$ | A/G | 0.0005 | $6.7 \times 10^{-16}$ | $53(28-98)$ |
| rs548041003 | $1: 45175146$ | C/T | 0.0021 | $6.3 \times 10^{-13}$ | $16(9-27)$ |
| rs144279563 | $1: 45294379$ | C/T | 0.0005 | $6.2 \times 10^{-16}$ | $53(28-99)$ |
| rs572162077 | $1: 45354774$ | G/C | 0.0010 | $1.0 \times 10^{-15}$ | $31(18-55)$ |
| ATM locus: associations with chr11q CNN-LOH |  |  |  |  |  |
| rs535473237 | $11: 108074178$ | A/G | 0.0004 | $1.8 \times 10^{-8}$ | $61(25-152)$ |
| rs532198118 | $11: 108355523$ | A/G | 0.0007 | $7.4 \times 10^{-9}$ | $41(18-94)$ |

Results are from Fisher's exact test on $n=120,664$ individuals. Alleles: risk lowering/risk increasing allele. RAF: risk allele frequency (in UK Biobank European-ancestry individuals).

Supplementary Table 9. cis associations with biased loss of $X\left(P_{\text {bias }}<10^{-6}\right)$ and $X$ gain data.

|  |  |  |  | Loss of female chrX |  |  |  |  | Gain of female chrX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNP | Location | A1/A2 | A2F | A2F $\mathrm{F}_{\text {case }}$ | $P_{\text {GWAS }}$ | $N_{\text {Al+ }}$ | $N_{\text {A2 }+}$ | $P_{\text {bias }}$ | A2F $\mathrm{F}_{\text {case }}$ | $P_{\text {GWAS }}$ | $N_{\text {Al+ }}$ | $N_{\text {A } 2+}$ | $P_{\text {bias }}$ |
| rs954958 | X:55129982 | C/T | 0.471 | 0.452 | $4.9 \times 10^{-3}$ | 540 | 716 | $7.6 \times 10^{-7}$ | 0.407 | 0.25 | 4 | 6 | 0.75 |
| rs10521478 | X:55208161 | A/G | 0.417 | 0.397 | $7.7 \times 10^{-4}$ | 515 | 713 | $1.8 \times 10^{-8}$ | 0.370 | 0.38 | 5 | 5 | 1.00 |
| rs1927307 | X:55337294 | G/A | 0.294 | 0.278 | $4.1 \times 10^{-3}$ | 436 | 621 | $1.4 \times 10^{-8}$ | 0.241 | 0.33 | 1 | 5 | 0.22 |
| rs5914315 | X:55354496 | T/C | 0.316 | 0.299 | $3.0 \times 10^{-3}$ | 447 | 639 | $6.2 \times 10^{-9}$ | 0.296 | 0.65 | 2 | 5 | 0.45 |
| rs12559108 | X:55422562 | T/C | 0.260 | 0.243 | $1.4 \times 10^{-3}$ | 374 | 572 | $1.3 \times 10^{-10}$ | 0.204 | 0.46 | 1 | 4 | 0.38 |
| rs7892090 | X:55432212 | T/C | 0.259 | 0.242 | $1.5 \times 10^{-3}$ | 379 | 569 | $7.3 \times 10^{-10}$ | 0.241 | 0.88 | 1 | 4 | 0.38 |
| rs57620007 | X:55476740 | T/C | 0.259 | 0.242 | $1.1 \times 10^{-3}$ | 377 | 568 | $5.6 \times 10^{-10}$ | 0.222 | 0.79 | 1 | 4 | 0.38 |
| rs3126241 | X:55601683 | T/C | 0.253 | 0.234 | $2.3 \times 10^{-4}$ | 360 | 562 | $3.0 \times 10^{-11}$ | 0.222 | 0.72 | 1 | 4 | 0.38 |
| rs149700928 | X:55684550 | G/C | 0.251 | 0.232 | $2.3 \times 10^{-4}$ | 357 | 555 | $5.8 \times 10^{-11}$ | 0.222 | 0.75 | 1 | 4 | 0.38 |
| rs5913856 | X:55747717 | A/G | 0.249 | 0.230 | $1.4 \times 10^{-4}$ | 349 | 558 | $4.0 \times 10^{-12}$ | 0.222 | 0.77 | 1 | 4 | 0.38 |
| rs1007153 | X:55778139 | C/T | 0.272 | 0.251 | $7.0 \times 10^{-5}$ | 363 | 592 | $1.2 \times 10^{-13}$ | 0.259 | 0.96 | 1 | 4 | 0.38 |
| rs5914476 | X:55852696 | T/G | 0.271 | 0.250 | $2.3 \times 10^{-5}$ | 358 | 590 | $4.7 \times 10^{-14}$ | 0.259 | 0.98 | 1 | 4 | 0.38 |
| rs6612385 | X:55853321 | A/G | 0.272 | 0.251 | $4.5 \times 10^{-5}$ | 364 | 589 | $3.1 \times 10^{-13}$ | 0.259 | 0.96 | 1 | 4 | 0.38 |
| rs10855058 | X:55936822 | G/A | 0.273 | 0.254 | $1.4 \times 10^{-4}$ | 385 | 592 | $3.7 \times 10^{-11}$ | 0.222 | 0.50 | 1 | 5 | 0.22 |
| rs6417935 | X:55960724 | C/T | 0.135 | 0.126 | $9.9 \times 10^{-3}$ | 219 | 352 | $2.9 \times 10^{-8}$ | 0.018 | 0.05 | 0 | 1 | 1.00 |
| rs6612472 | X:56152985 | A/G | 0.241 | 0.222 | $1.1 \times 10^{-4}$ | 322 | 547 | $2.2 \times 10^{-14}$ | 0.167 | 0.30 | 2 | 3 | 1.00 |
| rs4826461 | X:56226649 | A/G | 0.234 | 0.218 | $4.5 \times 10^{-4}$ | 311 | 539 | $4.8 \times 10^{-15}$ | 0.148 | 0.22 | 2 | 2 | 1.00 |
| rs6521388 | X:56345127 | A/G | 0.218 | 0.206 | $4.8 \times 10^{-3}$ | 289 | 533 | $1.4 \times 10^{-17}$ | 0.111 | 0.11 | 1 | 1 | 1.00 |
| rs5913935 | X:56428273 | T/C | 0.135 | 0.124 | $4.4 \times 10^{-3}$ | 203 | 356 | $9.9 \times 10^{-11}$ | 0.037 | 0.09 | 1 | 1 | 1.00 |
| rs5914638 | X:56456144 | T/C | 0.233 | 0.218 | $1.6 \times 10^{-3}$ | 305 | 557 | $7.3 \times 10^{-18}$ | 0.185 | 0.56 | 3 | 1 | 0.62 |
| rs1332731 | X:56495976 | T/C | 0.249 | 0.233 | $5.3 \times 10^{-4}$ | 327 | 579 | $4.7 \times 10^{-17}$ | 0.204 | 0.59 | 3 | 2 | 1.00 |
| rs721963 | X:56558810 | A/C | 0.225 | 0.211 | $4.7 \times 10^{-3}$ | 294 | 551 | $7.0 \times 10^{-19}$ | 0.130 | 0.17 | 2 | 1 | 1.00 |
| rs766912 | X:56630987 | A/G | 0.224 | 0.210 | $1.7 \times 10^{-3}$ | 293 | 548 | $1.1 \times 10^{-18}$ | 0.130 | 0.20 | 2 | 1 | 1.00 |
| rs74503599 | X:56640134 | C/T | 0.240 | 0.223 | $3.5 \times 10^{-4}$ | 312 | 566 | $8.1 \times 10^{-18}$ | 0.148 | 0.19 | 2 | 2 | 1.00 |
| rs5914806 | X:56847280 | A/G | 0.180 | 0.169 | $7.2 \times 10^{-3}$ | 249 | 459 | $2.5 \times 10^{-15}$ | 0.074 | 0.09 | 1 | 1 | 1.00 |
| rs5914815 | X:56870961 | T/C | 0.179 | 0.169 | $8.6 \times 10^{-3}$ | 250 | 460 | $2.8 \times 10^{-15}$ | 0.074 | 0.10 | 1 | 1 | 1.00 |
| rs5960832 | X:56894267 | C/T | 0.210 | 0.222 | $7.9 \times 10^{-3}$ | 501 | 351 | $3.1 \times 10^{-7}$ | 0.167 | 0.38 | 2 | 4 | 0.69 |
| rs5914035 | X:57008216 | T/C | 0.225 | 0.212 | $3.3 \times 10^{-3}$ | 292 | 560 | $2.9 \times 10^{-20}$ | 0.148 | 0.28 | 3 | 2 | 1.00 |
| rs912956 | X:57010138 | T/C | 0.207 | 0.195 | $5.1 \times 10^{-3}$ | 265 | 532 | $1.9 \times 10^{-21}$ | 0.093 | 0.08 | 1 | 1 | 1.00 |
| rs5914052 | X:57129959 | A/G | 0.225 | 0.213 | $3.6 \times 10^{-3}$ | 293 | 563 | $1.8 \times 10^{-20}$ | 0.148 | 0.27 | 3 | 2 | 1.00 |
| rs5960927 | X:57241324 | G/A | 0.209 | 0.222 | $6.7 \times 10^{-3}$ | 500 | 347 | $1.6 \times 10^{-7}$ | 0.185 | 0.69 | 2 | 4 | 0.69 |
| rs2516023 | X:57313357 | T/C | 0.226 | 0.212 | $2.3 \times 10^{-3}$ | 291 | 553 | $1.3 \times 10^{-19}$ | 0.148 | 0.28 | 3 | 2 | 1.00 |
| rs6611612 | X:57329089 | A/G | 0.227 | 0.213 | $1.3 \times 10^{-3}$ | 290 | 551 | $1.6 \times 10^{-19}$ | 0.148 | 0.26 | 3 | 2 | 1.00 |
| rs2060113 | X:57478582 | C/T | 0.221 | 0.209 | $6.8 \times 10^{-3}$ | 288 | 550 | $9.8 \times 10^{-20}$ | 0.130 | 0.18 | 3 | 1 | 0.62 |
| rs1594503 | X:57480930 | C/T | 0.244 | 0.231 | $8.6 \times 10^{-4}$ | 318 | 581 | $1.4 \times 10^{-18}$ | 0.167 | 0.29 | 3 | 2 | 1.00 |
| rs1997715 | X:57622607 | G/A | 0.225 | 0.213 | $3.7 \times 10^{-3}$ | 294 | 550 | $9.1 \times 10^{-19}$ | 0.148 | 0.28 | 3 | 2 | 1.00 |
| rs112877950 | X:57624653 | C/T | 0.028 | 0.027 | $7.9 \times 10^{-1}$ | 30 | 98 | $1.3 \times 10^{-9}$ | 0.018 | 0.67 | 0 | 0 | 1.00 |
| rs73226048 | X:57979353 | T/C | 0.221 | 0.209 | $5.7 \times 10^{-3}$ | 283 | 545 | $5.8 \times 10^{-20}$ | 0.111 | 0.10 | 2 | 1 | 1.00 |
| rs55950555 | X:57985647 | A/G | 0.302 | 0.313 | $5.6 \times 10^{-2}$ | 618 | 434 | $1.5 \times 10^{-8}$ | 0.333 | 0.50 | 1 | 4 | 0.38 |
| rs113699645 | X:58121440 | A/G | 0.026 | 0.025 | $6.9 \times 10^{-1}$ | 29 | 86 | $9.8 \times 10^{-8}$ | 0.018 | 0.72 | 0 | 0 | 1.00 |
| rs4625204 | X:58216902 | A/G | 0.202 | 0.215 | $4.2 \times 10^{-3}$ | 499 | 338 | $2.9 \times 10^{-8}$ | 0.222 | 0.77 | 1 | 5 | 0.22 |
| rs111318471 | X:58328362 | C/A | 0.026 | 0.026 | $6.8 \times 10^{-1}$ | 29 | 82 | $4.9 \times 10^{-7}$ | 0.018 | 0.76 | 0 | 0 | 1.00 |
| rs2942875 | X:58339545 | C/T | 0.447 | 0.429 | $9.7 \times 10^{-4}$ | 423 | 796 | $6.6 \times 10^{-27}$ | 0.315 | 0.07 | 6 | 1 | 0.12 |
| rs112064215 | X:61994151 | C/T | 0.053 | 0.050 | $2.8 \times 10^{-1}$ | 70 | 159 | $3.9 \times 10^{-9}$ | 0.056 | 0.96 | 1 | 0 | 1.00 |
| rs60576970 | X:61999396 | A/C | 0.493 | 0.513 | $9.4 \times 10^{-4}$ | 753 | 505 | $2.8 \times 10^{-12}$ | 0.500 | 0.88 | 1 | 5 | 0.22 |
| rs62597976 | X:62261609 | G/T | 0.300 | 0.322 | $1.1 \times 10^{-4}$ | 646 | 446 | $1.6 \times 10^{-9}$ | 0.259 | 0.44 | 1 | 6 | 0.12 |
| rs56329621 | X:62520485 | G/A | 0.032 | 0.029 | $3.4 \times 10^{-1}$ | 35 | 103 | $5.8 \times 10^{-9}$ | 0.037 | 0.33 | 1 | 0 | 1.00 |
| rs1221064 | X:62529141 | A/G | 0.085 | 0.078 | $2.6 \times 10^{-2}$ | 126 | 227 | $8.4 \times 10^{-8}$ | 0.074 | 0.87 | 1 | 0 | 1.00 |
| rs112933767 | X:63195237 | A/G | 0.042 | 0.041 | $9.2 \times 10^{-1}$ | 63 | 132 | $8.7 \times 10^{-7}$ | 0.056 | 0.25 | 1 | 1 | 1.00 |
| rs73213355 | X:64965828 | C/T | 0.060 | 0.061 | $6.0 \times 10^{-1}$ | 196 | 108 | $5.1 \times 10^{-7}$ | 0.074 | 0.76 | 1 | 1 | 1.00 |
| rs3848896 | X:65182724 | G/A | 0.096 | 0.096 | $7.0 \times 10^{-1}$ | 287 | 156 | $4.9 \times 10^{-10}$ | 0.111 | 0.79 | 3 | 1 | 0.62 |
| rs7056244 | X:65206855 | G/A | 0.070 | 0.074 | $1.9 \times 10^{-1}$ | 240 | 121 | $3.7 \times 10^{-10}$ | 0.111 | 0.32 | 3 | 1 | 0.62 |
| rs5918586 | X:65328292 | A/G | 0.136 | 0.136 | $6.8 \times 10^{-1}$ | 358 | 227 | $6.8 \times 10^{-8}$ | 0.130 | 0.78 | 4 | 1 | 0.38 |
| rs12836051 | X:114924811 | A/G | 0.160 | 0.148 | $5.5 \times 10^{-3}$ | 257 | 405 | $9.7 \times 10^{-9}$ | 0.125 | 0.50 | 2 | 4 | 0.69 |
| rs73224841 | X:114931929 | T/G | 0.022 | 0.022 | $7.6 \times 10^{-1}$ | 32 | 86 | $6.9 \times 10^{-7}$ | 0.018 | 0.81 | 1 | 0 | 1.00 |
| rs73224844 | X:114945104 | G/A | 0.022 | 0.022 | $5.3 \times 10^{-1}$ | 30 | 86 | $1.9 \times 10^{-7}$ | 0.018 | 0.83 | 1 | 0 | 1.00 |
| rs11091036 | X:115023111 | G/C | 0.266 | 0.249 | $1.1 \times 10^{-3}$ | 369 | 555 | $1.0 \times 10^{-9}$ | 0.304 | 0.50 | 6 | 6 | 1.00 |

$N=66,685$ females were analyzed. A1, A2: major/minor allele. A2F: minor allele frequency. A $2 \mathrm{~F}_{\text {case }}$ : A2 frequency in individuals with loss (resp. gain) of X. $P_{\text {GWAS }}$ : association with increased risk of X event. $N_{\mathrm{Al}+}$ : number of heterozygous individuals with X loss (resp. gain) in which the A1/A2 allelic balance shifts toward the A1 allele (and analogously for $N_{\mathrm{A} 2+}$ ). $P_{\text {bias }}$ :
$P$-value for biased shift.

## Supplementary Table 10. No evidence for rs2942875-biased X inactivation in GEUVADIS RNA-seq data.

| HG00122 | Read counts |  |  | HG00130 | Read counts |  |  | HG00133 | Read counts |  |  | HG00158 | Read counts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2516023 T/C | 2 | 1 |  | rs2516023 T/C | 8 | 0 |  | rs2516023 T/C | 2 | 2 |  | rs2516023 T/C | 3 | 1 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 2 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 9 | 0 |  | rs1367830 C/T | 6 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 2 | 5 |  |
| rs2060113 C/T | 1 | 1 |  | rs2060113 C/T | 1 | 0 |  | rs2060113 C/T | 2 | 1 |  | rs2060113 C/T | 1 | 2 |  |
| Total maj/min | 6 | 4 | 0.60 | Total maj/min | 18 | 0 | 1.00 | Total maj/min | 10 | 11 | 0.48 | Total maj/min | 6 | 8 | 0.43 |
| HG00231 | Read counts |  |  | HG00232 | Read counts |  |  | HG00239 | Read counts |  |  | HG00257 Read cou |  |  | ounts |
| rs2516023 T/C | 0 | 5 |  | rs2516023 T/C | 0 |  |  | rs2516023 T/C | 3 |  |  | rs2516023 T/C | 10 |  |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 4 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 1 | 1 |  |
| rs2060113 C/T | 0 | 4 |  | rs2060113 C/T | $0 \quad 4$ |  |  | rs2060113 C/T |  | 1 |  | rs2060113 C/T <br> Total maj $/ \mathrm{min}$ | 02 | 1 |  |
| Total maj/min | 0 | 17 | 0.00 | Total maj/min | 0 | 11 | 0.00 | Total maj/min | 8 | 7 | 0.53 |  |  | 2 | 0.50 |
| HG00266 | Read counts |  |  | HG00276 | Read counts |  |  | HG00315 | Read counts |  |  | HG00323 Read coun |  |  | counts |
| rs2516023 T/C | 2 | 0 |  | rs2516023 T/C | $0 \quad 2$ |  |  | rs2516023 T/C | 2 |  |  | rs2516023 T/C | 4 | 4 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 10 | 0 |  | rs1367830 C/T | 10 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 62 |  | rs1367830 C/T | 3 | 3 |  |
| rs2060113 C/T | 9 | 0 |  | rs2060113 C/T |  | 0 |  | rs2060113 C/T | 19 | 1 |  | rs2060113 C/T <br> Total maj/min | 1 | 0 |  |
| Total maj/min | 21 | 0 | 1.00 | Total maj/min | 1 | 15 | 0.06 | Total maj/min |  | 6 | 0.60 |  | 8 | 7 | 0.53 |
| HG00327 | Read counts |  |  | HG00332 | Read counts |  |  | HG00334 | Read counts |  |  | HG00337 | Read counts |  |  |
| rs2516023 T/C | 0 | 4 |  | rs2516023 T/C | 0 | 8 |  | rs2516023 T/C | 0 |  |  | rs2516023 T/C | 21 |  |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 4 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 6 |  |  | rs1367830 C/T | $0 \quad 8$ |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 2 |  |
| rs2060113 C/T | 0 | 2 |  | rs2060113 C/T | 13 |  |  | rs2060113 C/T | $0 \quad 3$ |  |  | rs2060113 C/T <br> Total maj/min | 2 | 0 |  |
| Total maj/min | 0 | 10 | 0.00 | Total maj/min | 2 | 17 | 0.11 | Total maj/min | 0 | 15 | 0.00 |  | $\begin{aligned} & 0 \\ & 4 \end{aligned}$ | 3 | 0.57 |
| HG00353 | Read counts |  |  | HG00362 | Read counts |  |  | HG00364 | Read counts |  |  | HG00381 Read counts |  |  |  |
| rs2516023 T/C | 0 | 0 |  | rs2516023 T/C | $0 \quad 2$ |  |  | rs2516023 T/C | 8 |  |  | rs2516023 T/C | 1 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 12 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 5 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 7 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 4 |  |
| rs2060113 C/T | 1 | 4 |  | rs2060113 C/T | 2 |  |  | rs2060113 C/T | 3 |  |  | rs2060113 C/T <br> Total maj/min | 1 | 3 |  |
| Total maj/min | 1 | 16 | 0.06 | Total maj/min | 5 | 8 | 0.38 | Total maj/min | 18 | 11 | 0.62 |  | 3 | 7 | 0.30 |
| HG01790 | Read counts |  |  | NA06985 | Read counts |  |  | NA07037 | Read counts |  |  | NA07056 Read counts |  |  |  |
| rs2516023 T/C |  | 0 |  | rs2516023 T/C | 2 |  |  | rs2516023 T/C | 7 |  |  | rs2516023 T/C | 0 | 31 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 2 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 40 |  |  | rs1367830 C/T | 13 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  |  |  |
| rs2060113 C/T | 0 | 2 |  | rs2060113 C/T | 6 |  |  | rs2060113 C/T | 7 |  |  | rs2060113 C/T <br> Total maj/min | 101 | 1 |  |
| Total maj/min | 3 | 4 | 0.43 | Total maj/min |  | 0 | 1.00 | Total maj/min | 27 | 0 | 1.00 |  |  | 5 | 0.17 |
| NA11830 | Read counts |  |  | NA11832 | Read counts |  |  | NA11892 | Read counts |  |  | NA11931 Read counts |  |  |  |
| rs2516023 T/C | 1 | 2 |  | rs2516023 T/C | 06 |  |  | rs2516023 T/C | 30 |  |  | $\begin{aligned} & \text { rs2516023 T/C } \\ & \text { rs1367830 C/T } \\ & \text { rs2060113 C/T } \\ & \text { Total maj/min } \\ & \hline \end{aligned}$ | 00 | 4 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 6 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | $0 \quad 9$ |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 |  |  |  |  | 0 |  |
| rs2060113 C/T | 1 | 3 |  | rs2060113 C/T | $0 \quad 1$ |  |  | rs2060113 C/T | 20 |  |  |  | 0 | 0 |  |
| Total maj/min | 5 | 11 | 0.31 | Total maj/min | 0 | 16 | 0.00 | Total maj/min | 9 | 0 | 1.00 |  | 0 | 5 | 0.00 |
| NA12058 | Read counts |  |  | NA12156 | Read counts |  |  | NA12234 Read counts |  |  |  | NA12275 Read counts |  |  |  |
| rs2516023 T/C |  | 10 |  | rs2516023 T/C | 1 |  |  | rs2516023 T/C | 0 |  |  | rs2516023 T/C | $0 \quad 6$ |  |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 11 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 45 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 51 |  |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 12 |  |
| rs2060113 C/T | 0 | 3 |  | rs2060113 C/T | $0 \quad 1$ |  |  | rs2060113 C/T | 1 | 0 |  | rs2060113 C/T | 0 | 7 |  |
| Total maj/min | 0 | 24 | 0.00 | Total maj/min | 5 | 10 | 0.33 | Total maj/min | 7 | 1 | 0.88 | Total maj/min | 0 | 25 | 0.00 |
| NA12283 |  | coun |  | NA12341 | Rea | count |  | NA12383 | Rea | count |  | NA12489 |  | coun |  |
| rs2516023 T/C | 2 | 0 |  | rs2516023 T/C | 7 | 1 |  | rs2516023 T/C | 2 | 0 |  | rs2516023 T/C | 0 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 10 | 0 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 9 | 0 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 10 | 1 |  | rs1367830 C/T | 1 | 5 |  |
| rs2060113 C/T | 3 | 0 |  | rs2060113 C/T | 6 | 0 |  | rs2060113 C/T | 4 | 0 |  | rs2060113 C/T | 2 | 1 |  |
| Total maj/min | 15 | 0 | 1.00 | Total maj/min | 22 | 1 | 0.96 | Total maj/min | 16 | 1 | 0.94 | Total maj/min | 3 | 6 | 0.33 |
| NA12718 |  | coun |  | NA12815 | Rea | count |  | NA12843 | Rea | count |  | NA12890 | Rea | coun |  |
| rs2516023 T/C | 0 | 2 |  | rs2516023 T/C |  | 3 |  | rs2516023 T/C | 1 | 6 |  | rs2516023 T/C | 3 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 9 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 1 | 7 |  | rs1367830 C/T | 1 | 5 |  | rs1367830 C/T | 10 | 0 |  |
| rs2060113 C/T | 0 | 4 |  | rs2060113 C/T | 0 | 3 |  | rs2060113 C/T | 1 | 4 |  | rs2060113 C/T | 5 | 0 |  |
| Total maj/min | 0 | 15 | 0.00 | Total maj/min | 1 | 13 | 0.07 | Total maj/min | 3 | 15 | 0.17 | Total maj/min | 18 | 0 | 1.00 |
| NA20502 |  | coun |  | NA20503 | Rea | count |  | NA20505 | Rea | count |  | NA20507 |  | coun |  |
| rs2516023 T/C | 2 | 0 |  | rs2516023 T/C |  | 0 |  | rs2516023 T/C | 4 | 1 |  | rs2516023 T/C | 3 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 4 | 0 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 0 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 7 | 0 |  | rs1367830 C/T | 6 | 4 |  |
| rs2060113 C/T | 0 | 0 |  | rs2060113 C/T |  | 0 |  | rs2060113 C/T | 3 | 0 |  | rs2060113 C/T | 5 | 2 |  |
| Total maj/min | 6 | 0 | 1.00 | Total maj/min | 2 | 0 | 1.00 | Total maj/min | 14 | 1 | 0.93 | Total maj/min | 14 | 6 | 0.70 |
| NA20508 |  | coun |  | NA20514 | Rea | count |  | NA20529 | Rea | count |  | NA20531 | Rea | coun |  |
| rs2516023 T/C | 3 | 0 |  | rs2516023 T/C |  | 2 |  | rs2516023 T/C | 5 | 0 |  | rs2516023 T/C | 4 | 1 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 1 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ |  | 3 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 11 | 1 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 6 | 7 |  |
| rs2060113 C/T | 1 | 0 |  | rs2060113 C/T |  | 1 |  | rs2060113 C/T | 3 | 0 |  | rs2060113 C/T | 3 | 4 |  |
| Total maj/min | 7 | 1 | 0.88 | Total maj/min | 7 | 6 | 0.54 | Total maj/min | 19 | 1 | 0.95 | Total maj/min | 13 | 12 | 0.52 |
| NA20541 |  | coun |  | NA20582 | Rea | count |  | NA20585 |  | count |  | NA20589 |  | coun |  |
| rs2516023 T/C | 5 | 0 |  | rs2516023 T/C | 4 | 2 |  | rs2516023 T/C | 0 | 2 |  | rs2516023 T/C | 0 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 4 | 0 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 12 | 4 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 5 |  | rs1367830 C/T | 6 | 0 |  |
| rs2060113 C/T | 0 | 0 |  | rs2060113 C/T | 4 | 2 |  | rs2060113 C/T | 0 | 1 |  | rs2060113 C/T | 2 | 0 |  |
| Total maj/min | 9 | 0 | 1.00 | Total maj/min | 20 | 8 | 0.71 | Total maj/min | 0 | 8 | 0.00 | Total maj/min | 8 | 0 | 1.00 |
| NA20756 |  | coun |  | NA20761 | Rea | count |  | NA20771 | Rea | count |  | NA20797 |  | coun |  |
| rs2516023 T/C | 2 | 13 |  | rs2516023 T/C | 1 | 6 |  | rs2516023 T/C | 4 | 2 |  | rs2516023 T/C | 11 | 0 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 6 |  | rs1367830 C/T | 9 | 1 |  |
| rs2060113 C/T | 0 | 0 |  | rs2060113 C/T | 1 | 2 |  | rs2060113 C/T | 2 | 0 |  | rs2060113 C/T | 4 | 0 |  |
| Total maj/min | 2 | 21 | 0.09 | Total maj/min | 5 | 16 | 0.24 | Total maj/min | 9 | 8 | 0.53 | Total maj/min | 24 | 1 | 0.96 |
| NA20799 |  | coun |  | NA20800 | Rea | count |  | NA20807 | Rea | count |  | NA20813 |  | coun |  |
| rs2516023 T/C | 0 | 4 |  | rs2516023 T/C | 0 | 1 |  | rs2516023 T/C | 1 | 3 |  | rs2516023 T/C | 0 | 4 |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 0 | 11 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 3 | 8 |  | rs $1367830 \mathrm{C} / \mathrm{T}$ | 1 | 7 |  |
| rs2060113 C/C | - | - |  | rs2060113 C/T | 0 | 4 |  | rs2060113 C/T | 3 | 4 |  | rs2060113 C/T | 1 | 4 |  |
| Total maj/min | 0 | 12 | 0.00 | Total maj/min | 0 | 16 | 0.00 | Total maj/min | 7 | 15 | 0.32 | Total maj/min | 2 | 15 | 0.12 |
| NA20819 | Rea | coun |  |  |  |  |  |  |  |  |  |  |  |  |  |
| rs2516023 T/C | 4 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| rs $1367830 \mathrm{C} / \mathrm{T}$ | 5 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| rs2060113 C/T | 3 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total maj/min | 12 | 3 | 0.80 |  |  |  |  |  |  |  |  |  |  |  |  |

RNA-seq reads at three coding SNPs in LD with rs2942875 (the strongest cis association for biased loss of X ) show consistent allele-specific expression within most individuals, as expected from X-chromosome inactivation that favors one homologous chromosome. However, across individuals, neither haplotype appears to be favored (30 individuals have more major-haplotype reads and 30 have more minor reads).

Supplementary Table 11. trans association with classes of mCAs at SNPs previously reported to be associated with related phenotypes.

| SNP | Location | Gene(s) reported | MAF | GWAS trait | $P_{\text {any }}$ | $P_{\text {loss }}$ | $P_{\text {CNN-LOH }}$ | $P_{\text {gain }}$ | $P_{\text {auto }}$ | $P_{\text {auto loss }}$ | $P_{\mathrm{X} \text { loss }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2736609 | 1:156202640 | PMFI, SEMA4A | 0.36 | mLOY | 0.5 | 0.69 | 0.47 | 0.92 | 0.68 | 0.62 | 0.95 |
| rs11125529 | 2:54475866 | ACYP2 | 0.14 | telo | 0.55 | 0.35 | 0.082 | 1 | 0.21 | 0.95 | 0.25 |
| rs13401811 | 2:111616104 | ACOXL, BCL2L11 | 0.18 | CLL | 0.57 | 0.67 | 0.71 | 0.74 | 0.51 | 0.73 | 0.84 |
| rs17483466 | 2:111797458 | ACOXL, BCL2L11 | 0.2 | CLL | 0.12 | 0.76 | 0.11 | 0.92 | 0.15 | 0.72 | 0.5 |
| rs58055674 | 2:111831793 | ACOXL | 0.18 | CLL | 0.2 | 0.45 | 0.75 | 0.78 | 0.56 | 0.95 | 0.28 |
| rs1439287 | 2:111871897 | ACOXL, BCL2L11 | 0.49 | CLL | 0.28 | 0.28 | 0.71 | 0.59 | 0.92 | 0.21 | 0.36 |
| rs9308731 | 2:111908262 | BCL2L11 | 0.45 | CLL | 0.37 | 0.55 | 0.51 | 0.4 | 0.96 | 0.14 | 0.21 |
| rs13015798 | 2:201909515 | FAM126B, CASP8 | 0.33 | CLL | 0.0067 | 0.59 | 0.11 | 0.061 | 0.015 | 0.87 | 0.16 |
| rs3769825 | 2:202111380 | CASP8, CASP10 | 0.43 | CLL | 0.14 | 0.032 | 0.78 | 0.21 | 0.49 | 0.24 | 0.095 |
| rs13397985 | 2:231091223 | SP140 | 0.19 | CLL | 0.028 | 0.00026 | 0.91 | 0.25 | 0.13 | 0.0049 | 0.015 |
| rs9880772 | 3:27777779 | EOMES | 0.45 | CLL | 0.69 | 0.16 | 0.59 | 0.14 | 0.97 | 0.6 | 0.87 |
| rs115854006 | 3:48388170 | TREXI, PLXNBI | 0.036 | mLOY | 0.4 | 0.55 | 0.81 | 0.28 | 0.17 | 0.075 | 0.9 |
| rs13088318 | 3:101242751 | SENP7 | 0.34 | mLOY | 0.75 | 0.55 | 0.24 | 0.15 | 0.24 | 0.29 | 0.68 |
| rs59633341 | 3:150018880 | TSC22D2 | 0.16 | mLOY | 0.47 | 0.44 | 0.26 | 0.14 | 0.31 | 0.96 | 0.8 |
| rs2201862 | 3:168648039 | EGFEMIP, MECOM | 0.5 | MPN | 0.13 | 0.38 | 0.75 | 0.0091 | 0.35 | 0.34 | 0.36 |
| rs10936599 | 3:169492101 | MYNN | 0.25 | CLL,telo | 0.095 | 0.22 | 0.4 | 0.6 | 0.16 | 0.28 | 0.62 |
| rs9815073 | 3:188115682 | LPP | 0.34 | CLL | 0.26 | 0.49 | 0.041 | 0.066 | 0.054 | 0.53 | 0.54 |
| rs1548483 | 4:105749895 | TET2 | 0.034 | MPN | 0.67 | 0.19 | 0.3 | 0.34 | 0.71 | 0.13 | 0.48 |
| rs898518 | 4:109016824 | LEF1 | 0.42 | CLL | 0.95 | 0.95 | 0.58 | 0.58 | 0.39 | 0.59 | 0.76 |
| rs6858698 | 4:114683844 | CAMK2D | 0.16 | CLL | 0.63 | 0.57 | 0.24 | 0.54 | 0.76 | 0.052 | 0.69 |
| rs7675998 | 4:164007820 | NAF1 | 0.22 | telo | 0.48 | 0.6 | 0.69 | 0.62 | 0.42 | 0.085 | 0.67 |
| rs34002450 | 5:1280940 | TERT | 0.38 | CH | 0.0031 | 0.092 | 0.0012 | 0.026 | $7.8 \times 10^{-5}$ | 0.0019 | 0.75 |
| rs7705526 | 5:1285974 | TERT | 0.33 | MPN | 0.00052 | 0.036 | $8.6 \times 10^{-5}$ | 0.16 | $4.8 \times 10^{-5}$ | 0.0092 | 0.2 |
| rs2736100 | 5:1286516 | TERT | 0.5 | MPN, telo | 0.0014 | 0.069 | 0.00095 | 0.12 | 0.00098 | 0.062 | 0.24 |
| rs2853677 | 5:1287194 | TERT | 0.42 | MPN | 0.0043 | 0.44 | 0.00036 | 0.44 | 0.0014 | 0.38 | 0.92 |
| rs56084922 | 5:111061883 | NR | 0.078 | mLOY | 0.58 | 0.38 | 0.73 | 0.19 | 0.64 | 0.36 | 0.78 |
| rs9391997 | 6:409119 | IRF4 | 0.47 | CLL | 0.92 | 0.62 | 0.38 | 0.93 | 0.66 | 0.73 | 0.68 |
| rs872071 | 6:411064 | IRF4 | 0.47 | CLL | 0.99 | 0.7 | 0.35 | 0.97 | 0.69 | 0.73 | 0.75 |
| rs73718779 | 6:2969278 | SERPINB6 | 0.11 | CLL | 0.59 | 0.86 | 0.85 | 0.57 | 0.57 | 0.73 | 0.02 |
| rs926070 | 6:32257566 | HLA | 0.34 | CLL | 1 | 0.94 | 0.16 | 0.12 | 0.87 | 0.29 | 0.52 |
| rs674313 | 6:32578082 | HLA-DRB5 | 0.24 | CLL | 0.86 | 0.14 | 0.19 | 0.95 | 0.37 | 0.58 | 0.082 |
| rs9273363 | 6:32626272 | HLA | 0.3 | CLL | 0.46 | 1 | 0.59 | 0.07 | 0.053 | 0.014 | 0.19 |
| rs210142 | 6:33546837 | BAK1 | 0.3 | CLL | 0.63 | 0.44 | 0.99 | 0.9 | 0.92 | 0.58 | 0.4 |
| rs13191948 | 6:109634599 | SMPD2, CCDC162P | 0.46 | mLOY | 0.45 | 0.95 | 0.87 | 0.67 | 0.85 | 0.47 | 0.18 |
| rs2236256 | 6:154478440 | IPCEF1 | 0.46 | CLL | 0.72 | 0.099 | 0.41 | 0.39 | 0.82 | 0.2 | 0.53 |
| rs381500 | 6:164478388 | QKI | 0.45 | mLOY | 0.49 | 0.63 | 0.17 | 0.43 | 0.083 | 0.068 | 0.56 |
| rs4721217 | 7:1973579 | MADILI | 0.4 | mLOY | 0.0055 | 0.69 | 0.28 | 0.01 | 0.009 | 0.57 | 0.45 |
| rs17246404 | 7:124462661 | POTI | 0.28 | CLL | 0.99 | 0.3 | 0.78 | 0.029 | 0.53 | 0.29 | 0.58 |
| rs58270997 | 7:130729394 | PINT | 0.25 | MPN | 0.049 | 0.039 | 0.039 | 0.45 | 0.29 | 0.94 | 0.34 |
| rs35091702 | 8:30279470 | RBPMS | 0.26 | mLOY | 0.58 | 0.21 | 0.88 | 0.85 | 0.52 | 0.97 | 0.055 |
| rs2511714 | 8:103578874 | ODF1, KLF10 | 0.4 | CLL | 0.034 | 0.13 | 0.34 | 0.46 | 0.6 | 0.32 | 0.011 |
| rs2466035 | 8:128211229 | MYC | 0.33 | CLL | 0.59 | 0.55 | 0.25 | 0.65 | 0.89 | 0.25 | 0.34 |
| rs59384377 | 9:5005034 | JAK2 | 0.26 | MPN | 0.057 | 0.012 | 0.97 | 0.74 | 0.37 | 0.024 | 0.18 |
| rs12339666 | 9:5063296 | JAK2 | 0.26 | MPN | 0.11 | 0.027 | 0.98 | 0.87 | 0.4 | 0.032 | 0.35 |
| rs10974944 | 9:5070831 | JAK2 | 0.25 | MPN | 0.036 | 0.013 | 0.66 | 0.99 | 0.17 | 0.0097 | 0.46 |
| rs1679013 | 9:22206987 | ASI, CDKN2B | 0.46 | CLL | 0.42 | 0.5 | 0.56 | 0.33 | 0.47 | 0.2 | 0.7 |
| rs1359742 | 9:22336996 | DMRTAI, CDKN2B-ASI | 0.47 | CLL | 0.9 | 0.6 | 0.26 | 0.64 | 0.54 | 0.042 | 0.3 |
| rs621940 | 9:135870130 | GFIIB | 0.16 | MPN | 0.74 | 0.52 | 0.073 | 0.25 | 0.44 | 0.18 | 0.52 |
| rs1800682 | 10:90749963 | ACTA, FAS | 0.46 | CLL | 0.023 | 0.033 | 0.12 | 0.29 | 0.037 | 0.39 | 0.92 |
| rs 4406737 | 10:90759724 | ACTA2, FAS | 0.44 | CLL | 0.45 | 0.51 | 0.3 | 0.15 | 0.15 | 0.35 | 0.59 |
| rs9420907 | 10:105676465 | OBFCI | 0.13 | telo | 0.32 | 0.057 | 0.99 | 0.87 | 0.45 | 0.059 | 0.13 |
| rs7944004 | 11:2311152 | TSPAN32 | 0.49 | CLL | 0.69 | 0.5 | 0.66 | 0.27 | 0.29 | 0.021 | 0.37 |
| rs2521269 | 11:2321095 | Cllorf21 | 0.46 | CLL | 0.095 | 0.27 | 0.76 | 0.18 | 0.099 | 0.18 | 0.3 |
| rs4754301 | 11:108048541 | NPAT, ATM, ACATI | 0.45 | mLOY | 0.95 | 0.9 | 0.44 | 0.19 | 0.51 | 0.46 | 0.74 |
| rs1800056 | 11:108138003 | ATM | 0.013 | MPN | 0.099 | 0.26 | 0.25 | 0.54 | 0.093 | 0.77 | 0.77 |
| rs35923643 | 11:123355391 | GRAMDIB | 0.2 | CLL | 0.027 | 0.045 | 0.11 | 0.049 | 0.0091 | 0.071 | 0.31 |
| rs735665 | 11:123361397 | SCN3B, GRAMDIB | 0.19 | CLL | 0.055 | 0.049 | 0.17 | 0.034 | 0.016 | 0.08 | 0.34 |
| rs2953196 | 11:123368333 | NR | 0.25 | CLL | 0.049 | 0.1 | 0.81 | 0.22 | 0.06 | 0.31 | 0.87 |
| rs7310615 | 12:111865049 | SH2B3 | 0.48 | MPN | 0.39 | 0.47 | 0.85 | 0.86 | 0.86 | 0.33 | 0.25 |
| rs10687116 | 13:41678081 | WBP4 | 0.2 | mLOY | 0.76 | 0.59 | 0.72 | 0.6 | 0.8 | 0.99 | 0.73 |
| rs1122138 | 14:96180242 | TCLIA | 0.16 | mLOY | 0.33 | 0.37 | 0.23 | 0.54 | 0.07 | 0.051 | 0.48 |
| rs2887399 | 14:96180695 | TCLIA | 0.2 | mLOY | 0.31 | 0.79 | 0.088 | 0.61 | 0.064 | 0.095 | 0.49 |
| rs137952017 | 14:101176090 | DLKI | 0.15 | mLOY | 0.018 | 0.15 | 0.25 | 0.0031 | 0.071 | 0.68 | 0.36 |
| rs8024033 | 15:40403657 | BMF | 0.5 | CLL | 0.083 | 0.83 | 0.029 | 0.45 | 0.011 | 0.068 | 0.4 |
| rs11636802 | 15:56775597 | MNS1, RFXDC2 | 0.11 | CLL | 0.32 | 0.79 | 0.65 | 0.37 | 0.36 | 0.8 | 0.84 |
| rs72742684 | 15:56780767 | MNSI, RFX7 | 0.11 | CLL | 0.35 | 0.89 | 0.6 | 0.34 | 0.35 | 0.92 | 0.7 |
| rs2052702 | 15:69989505 | PCAT29 | 0.38 | CLL | 0.85 | 0.98 | 0.75 | 0.96 | 0.7 | 0.46 | 0.47 |
| rs7176508 | 15:70018990 | RPLPI | 0.38 | CLL | 0.93 | 0.86 | 0.62 | 0.89 | 0.54 | 0.42 | 0.37 |
| rs12448368 | 16:81044947 | CENPN, ATMIN | 0.13 | mLOY | 0.034 | 0.26 | 0.24 | 0.34 | 0.075 | 0.37 | 0.24 |
| rs391023 | 16:85927814 | IRF8 | 0.36 | CLL | 0.077 | 0.37 | 0.0067 | 0.31 | 0.064 | 0.84 | 0.012 |
| rs391855 | 16:85928621 | IRF8 | 0.42 | CLL | 0.0099 | 0.18 | 0.0013 | 0.37 | 0.015 | 0.85 | 0.016 |
| rs391525 | 16:85944439 | IRF8 | 0.34 | CLL | 0.025 | 0.045 | 0.0073 | 0.92 | 0.023 | 0.076 | 0.24 |
| rs1044873 | 16:85955671 | IRF8 | 0.39 | CLL | 0.034 | 0.13 | 0.0055 | 0.97 | 0.024 | 0.15 | 0.4 |
| rs78378222 | 17:7571752 | TP53 | 0.013 | mLOY | 0.037 | $\mathbf{3 . 2} \times 10^{-5}$ | 0.99 | 0.29 | 0.42 | 0.0044 | 0.0059 |
| rs77522818 | 17:47817373 | FAM117A | 0.043 | mLOY | 0.011 | 0.077 | 0.08 | 0.53 | 0.013 | 0.091 | 0.36 |
| rs11082396 | 18:42080720 | SETBPI | 0.13 | mLOY | 0.22 | 0.37 | 0.5 | 0.42 | 0.44 | 0.99 | 0.78 |
| rs4368253 | 18:57622287 | PMAIPI | 0.32 | CLL | 0.59 | 0.87 | 0.89 | 0.086 | 0.54 | 0.55 | 0.83 |
| rs4987856 | 18:60793494 | BCL2 | 0.097 | CLL | 0.25 | 0.49 | 0.083 | 0.29 | 0.19 | 0.15 | 0.44 |
| rs4987855 | 18:60793549 | BCL2 | 0.097 | CLL | 0.34 | 0.52 | 0.14 | 0.37 | 0.28 | 0.14 | 0.44 |
| rs4987852 | 18:60793921 | BCL2 | 0.07 | CLL | 0.85 | 0.99 | 0.7 | 0.68 | 0.8 | 0.91 | 0.4 |
| rs17758695 | 18:60920854 | BCL2 | 0.03 | mLOY | 0.61 | 0.2 | 0.45 | 0.036 | 0.83 | 0.32 | 0.23 |
| rs8105767 | 19:22215441 | ZNF208 | 0.29 | telo | 0.62 | 0.98 | 0.18 | 0.12 | 0.22 | 0.72 | 0.81 |
| rs11083846 | 19:47207654 | PRKD2, STRN4 | 0.23 | CLL | 0.088 | 0.36 | 0.025 | 0.51 | 0.14 | 0.4 | 0.36 |
| rs60084722 | 20:30355738 | TPX2, BCL2LI, HM13 | 0.21 | mLOY | 0.018 | 0.0051 | 0.049 | 0.77 | 0.17 | 0.51 | 0.16 |
| rs755017 | 20:62421622 | RTEL1 | 0.13 | telo | 0.0047 | 0.0064 | 0.16 | 0.61 | 0.023 | 0.15 | 0.14 |
| rs555607708 | 22:29091856 | CHEK2 | 0.0019 | MPN | 0.0038 | 0.01 | 0.00012 | 0.3 | $7.7 \times 10^{-5}$ | $1.8 \times 10^{-6}$ | 0.76 |

See next page for extended caption.

Extended caption for Supplementary Table. 11. We examined SNPs previously associated with chronic lymphocytic leukemia (CLL) [47, 83-87], myeloproliferative neoplasms (MPN) [15-17, 20, 88], loss of chromosome Y [19, 21], clonal hematopoiesis ( CH ) [11], and telomere length [89] for association with classes of mCAs, hypothesizing that similar mechanisms could be perturbed. Of the 88 unique SNPs collectively reported for these traits, 86 were imputed in the $N=150 \mathrm{~K}$ UK Biobank data; we report associations (Fisher's exact test) of these SNPs with:

- Mosaic status for mCAs on any chromosome ( $P_{\text {any }}$ )
- Mosaic status for loss events ( $P_{\text {loss }}$ )
- Mosaic status for CNN-LOH events ( $P_{\mathrm{CNN}-\mathrm{LOH}}$ )
- Mosaic status for gain events ( $P_{\text {gain }}$ )
- Mosaic status for mCAs on any autosome ( $P_{\text {auto }}$ )
- Mosaic status for loss events on any autosome ( $P_{\text {auto loss }}$ )
- Mosaic status for female loss of $\operatorname{chrX}\left(P_{\mathrm{X} \text { loss }}\right)$.

We stratified events by autosome/chrX in the manner above because nearly all female chrX events are losses (Fig. 1).

Four SNPs reach Bonferroni significance ( $P<8.3 \times 10^{-5}$ for 86 SNPs $\times 7$ phenotypes):

- rs34002450 (chr5:1280940), a common intronic deletion in TERT previously associated with clonal hematopoiesis [11]. This SNP is most strongly associated with autosomal events ( $P=7.8 \times 10^{-5}$ ) .
- rs7705526 (chr5:1285974), a common SNP in TERT previously associated with somatic $J A K 2$ V617F mutation [20] and in strong LD with rs2736100, previously associated with telomere length [89]. This SNP is also in LD with rs34002450 (European $R^{2}=0.53$ computed using LDlink [90]) and is most strongly associated with autosomal events ( $P=4.8 \times 10^{-5}$ ). The alleles of these SNPs that were previously associated with longer telomeres are the risk alleles for mosaic status.
- rs78378222 (chr17:7571752), a low-frequency 3' UTR SNP in TP53 previously associated with mosaic loss of Y [21]. This SNP is most strongly associated with loss events ( $P=3.2 \times 10^{-5}$ ).
- rs555607708 (chr22:29091856), a rare frameshift SNP in CHEK2 previously associated with somatic JAK2 V617F mutation [20]. This SNP is most strongly associated with autosomal loss events ( $P=1.8 \times 10^{-6}$ ).

Supplementary Table 12. Risk increase for incident cancers conferred by mCAs.
(a) Analyses restricted to $n=36$ cases and 113,923 controls with normal blood counts at assessment

| mCA | CLL |  | MPN |  | Any blood cancer |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P$ | OR (95\% CI) | $P$ | OR (95\% CI) | $P$ | OR (95\% CI) |
| $1 \mathrm{p}=$ | 1 | 0 (0-85.8) | 0.025 | 41.2 (0.99-260) | 0.32 | 2.64 (0.07-15.2) |
| $1 \mathrm{q}=$ | 1 | 0 (0-123) | 1 | 0 (0-204) | 0.25 | 3.52 (0.09-20.4) |
| 2p- | 1 | 0 (0-415) | 1 | 0 (0-786) | 1 | 0 (0-48.5) |
| $3+$ | $1.7 \times 10^{-5}$ | 421 (42-2.05e+03) | 1 | 0 (0-1.39e+03) | 0.0016 | 39.2 (4.19-180) |
| $3 \mathrm{q}=$ | 1 | 0 (0-817) | 1 | 0 (0-1.76e+03) | 1 | 0 (0-93.8) |
| $4 \mathrm{q}-$ | 1 | 0 (0-292) | 1 | 0 (0-608) | 0.11 | 9.39 (0.23-58.6) |
| $4 \mathrm{q}=$ | 1 | 0 (0-344) | 1 | 0 (0-656) | 0.0063 | 18.3 (2.07-75) |
| 5q- | 1 | 0 (0-366) | 1 | 0 (0-701) | 0.095 | 10.5 (0.25-66.3) |
| $5 \mathrm{q}=$ | 1 | 0 (0-491) | 1 | 0 (0-814) | 1 | 0 (0-59.2) |
| $6 \mathrm{p}=$ | 1 | 0 (0-373) | 1 | 0 (0-548) | 1 | 0 (0-34.5) |
| $7 \mathrm{q}-$ | 1 | 0 (0-331) | 1 | 0 (0-571) | 1 | 0 (0-34.6) |
| 8+ | 0.0072 | 155 (3.52-1.11e+03) | 1 | 0 (0-1.27e+03) | $2.4 \times 10^{-5}$ | 68.3 (11.9-272) |
| $8 \mathrm{q}=$ | 1 | 0 (0-534) | 1 | 0 (0-848) | 1 | 0 (0-56.1) |
| 9+ | 1 | 0 (0-740) | 1 | 0 (0-1.38e+03) | 1 | 0 (0-75.3) |
| $9 \mathrm{p}=$ | 1 | 0 (0-201) | $1.6 \times 10^{-10}$ | 609 (144-1.91e+03) | $8.3 \times 10^{-6}$ | 36.7 (9.16-108) |
| $9 \mathrm{q}=$ | 1 | 0 (0-153) | 1 | 0 (0-270) | 1 | 0 (0-16.4) |
| 10q- | 1 | 0 (0-397) | 1 | 0 (0-674) | 1 | 0 (0-45.1) |
| 11q- | 1 | 0 (0-324) | 1 | 0 (0-495) | 0.11 | 8.55 (0.21-52.5) |
| 11p= | 1 | $0(0-113)$ | 1 | 0 (0-182) | 1 | 0 (0-11.6) |
| $11 q=$ | 1 | 0 (0-132) | 0.018 | 58 (1.37-376) | 0.0025 | 11.8 (2.35-36.9) |
| 12+ | $2.2 \times 10^{-10}$ | 191 (55.1-527) | 1 | 0 (0-234) | $1.9 \times 10^{-8}$ | 27.6 (10.5-61.8) |
| $12 \mathrm{q}=$ | 1 | 0 (0-270) | 1 | 0 (0-538) | 1 | 0 (0-32) |
| 13q- | 0.016 | 66 (1.57-419) | 1 | 0 (0-257) | 0.12 | 8.19 (0.2-50.3) |
| $13 q=$ | 0.00024 | 97.2 (11-404) | 1 | 0 (0-282) | 0.18 | 5.15 (0.13-30.4) |
| 14+ | 1 | 0 (0-302) | 1 | 0 (0-520) | 1 | 0 (0-34.6) |
| 14q- | 0.006 | 187 (4.21-1.42e+03) | 1 | 0 (0-1.07e+03) | 0.049 | 22 (0.5-154) |
| $14 q=$ | 1 | 0 (0-79.1) | 0.03 | 34.3 (0.83-215) | 0.071 | 4.7 (0.56-17.6) |
| 15+ | 1 | 0 (0-151) | 1 | 0 (0-308) | 0.21 | 4.33 (0.11-26) |
| $15 q=$ | 1 | 0 (0-126) | 1 | 0 (0-220) | 0.25 | 3.48 (0.09-20.3) |
| $16 \mathrm{p}=$ | 1 | 0 (0-198) | 1 | 0 (0-336) | 0.00083 | 17.7 (3.48-56.4) |
| $16 \mathrm{q}=$ | 1 | 0 (0-250) | 1 | 0 (0-415) | 1 | 0 (0-25.2) |
| 17+ | 1 | 0 (0-504) | 1 | 0 (0-754) | 0.071 | 14.6 (0.34-95.1) |
| 17p- | 1 | 0 (0-412) | 1 | 0 (0-588) | 0.087 | 11.7 (0.28-74.4) |
| $17 \mathrm{q}=$ | 1 | 0 (0-194) | 1 | 0 (0-295) | 1 | 0 (0-19.6) |
| 18+ | 0.013 | 85.1 (1.96-590) | 1 | 0 (0-529) | 0.00023 | 29.1 (5.46-99.9) |
| $19 \mathrm{p}=$ | 1 | 0 (0-374) | 1 | 0 (0-690) | 1 | 0 (0-41) |
| $19 \mathrm{q}=$ | 1 | 0 (0-278) | 1 | 0 (0-585) | 1 | 0 (0-32.4) |
| 20q- | 1 | 0 (0-107) | 1 | 0 (0-215) | 0.0003 | 13.6 (3.55-37) |
| $20 \mathrm{q}=$ | 1 | 0 (0-460) | 1 | 0 (0-660) | 1 | 0 (0-47.4) |
| 21+ | 1 | 0 (0-483) | 1 | 0 (0-909) | 0.077 | 13.4 (0.32-87) |
| $21 q=$ | 1 | 0 (0-540) | 1 | 0 (0-935) | 1 | 0 (0-57) |
| 22+ | 1 | 0 (0-239) | 1 | 0 (0-452) | 1 | 0 (0-26.7) |
| 22q- | 1 | 0 (0-1.23e+03) | 1 | 0 (0-947) | 1 | 0 (0-126) |
| $22 q=$ | 1 | 0 (0-182) | 1 | 0 (0-308) | 1 | 0 (0-20.3) |
| -X | 1 | 0 (0-8.14) | 1 | 0 (0-20.3) | 0.44 | 0.5 (0.06-1.85) |

This table provides numerical data plotted in Fig. 5a. Events were grouped by chromosome and copy number, with loss and CNN-LOH events subdivided by p-arm vs. q-arm; events observed in $\geq 30$ individuals were tested for association with incident CLL, MPN, and any blood cancer (diagnosed $>1$ year after DNA collection in individuals with no previous cancer diagnosis).
(b) Analyses of $n=78$ cases and 118,481 controls with no restrictions on blood counts at assessment

| mCA | CLL |  | MPN |  | Any blood cancer |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P | OR (95\% CI) | P | OR (95\% CI) | P | OR (95\% CI) |
| $1 \mathrm{p}=$ | 1 | 0 (0-40) | 0.046 | 22.1 (0.54-133) | 0.4 | 1.96 (0.05-11.3) |
| $1 \mathrm{q}=$ | 1 | 0 (0-51.9) | 1 | 0 (0-110) | 0.34 | 2.44 (0.06-14.1) |
| 2p- | 0.027 | 38.1 (0.91-241) | 1 | 0 (0-436) | 0.13 | 7.55 (0.18-46.6) |
| 3+ | $7.8 \times 10^{-5}$ | 190 (19.6-936) | 1 | 0 (0-749) | $8.5 \times 10^{-5}$ | 43.2 (7.76-161) |
| $3 \mathrm{q}=$ | 1 | 0 (0-423) | 1 | 0 (0-780) | 1 | 0 (0-74.3) |
| $4 \mathrm{q}-$ | 1 | 0 (0-133) | 1 | 0 (0-316) | 0.15 | 6.34 (0.15-38.8) |
| $4 \mathrm{q}=$ | 1 | 0 (0-159) | 1 | 0 (0-328) | 0.011 | 13.4 (1.53-54.7) |
| 5 q - | 1 | 0 (0-167) | 0.011 | 93.4 (2.21-614) | 0.0082 | 16 (1.81-65.8) |
| $5 \mathrm{q}=$ | 1 | 0 (0-230) | 1 | 0 (0-417) | 1 | 0 (0-40.9) |
| $6 \mathrm{p}=$ | 1 | 0 (0-165) | 1 | 0 (0-286) | 1 | 0 (0-26.5) |
| 7 q - | 1 | 0 (0-137) | 1 | 0 (0-323) | 0.15 | 6.25 (0.15-38.5) |
| $8+$ | 0.018 | 60.8 (1.41-410) | 1 | 0 (0-606) | $6.8 \times 10^{-8}$ | 62.6 (17.5-186) |
| $8 \mathrm{q}=$ | 1 | 0 (0-257) | 1 | 0 (0-460) | 1 | 0 (0-44.9) |
| $9+$ | 1 | 0 (0-324) | 1 | 0 (0-665) | 1 | 0 (0-54.3) |
| $9 \mathrm{p}=$ | 1 | 0 (0-89.4) | $1.6 \times 10^{-21}$ | 560 (225-1.26e+03) | $1.1 \times 10^{-11}$ | 39.5 (16.8-83.1) |
| $9 \mathrm{q}=$ | 1 | 0 (0-69.3) | 1 | 0 (0-155) | 1 | 0 (0-12.9) |
| 10q- | 1 | 0 (0-205) | 1 | 0 (0-310) | 1 | 0 (0-34.7) |
| 11q- | 0.0006 | 61.2 (6.93-251) | 1 | 0 (0-271) | 0.00099 | 16.9 (3.29-54.8) |
| $11 \mathrm{p}=$ | 1 | 0 (0-52.5) | 1 | 0 (0-96.5) | 1 | 0 (0-8.84) |
| $11 \mathrm{q}=$ | 1 | 0 (0-53.6) | 0.032 | 32.6 (0.79-202) | 0.0076 | 7.88 (1.57-24.3) |
| 12+ | $1.2 \times 10^{-20}$ | 173 (78.1-355) | 1 | 0 (0-131) | $2 \times 10^{-15}$ | 33.9 (17-62.7) |
| $12 \mathrm{q}=$ | 1 | 0 (0-126) | 1 | 0 (0-296) |  | 0 (0-24.2) |
| 13q- | $3.4 \times 10^{-19}$ | 185 (80.2-392) | 1 | 0 (0-134) | $1.1 \times 10^{-11}$ | 29.5 (13.3-58.9) |
| $13 \mathrm{q}=$ | $3.3 \times 10^{-7}$ | 81.5 (20.7-233) | 1 | 0 (0-149) | 0.00026 | 14 (3.67-38.4) |
| 14+ | 1 | 0 (0-118) | 1 | 0 (0-291) | 1 | 0 (0-22.7) |
| 14q- | 0.00017 | 123 (13.3-540) | 1 | 0 (0-488) | 0.00023 | 29.4 (5.48-102) |
| $14 \mathrm{q}=$ | 1 | 0 (0-34.7) | 0.0014 | 38.4 (4.45-151) | 0.0035 | 6.74 (1.8-17.9) |
| 15+ | 1 | 0 (0-65.7) | 1 | 0 (0-160) | 0.28 | 3.13 (0.08-18.6) |
| $15 \mathrm{q}=$ | 1 | 0 (0-57) | 1 | 0 (0-116) | 0.32 | 2.65 (0.07-15.4) |
| $16 \mathrm{p}=$ | 1 | 0 (0-84.4) | 1 | 0 (0-190) | 0.0022 | 12.4 (2.45-39.1) |
| $16 \mathrm{q}=$ | 1 | 0 (0-112) | 1 | 0 (0-228) | 1 | 0 (0-19.6) |
| 17+ | 1 | 0 (0-181) | 1 | 0 (0-487) | 0.11 | 9.2 (0.22-58.1) |
| 17p- | 1 | 0 (0-140) | 1 | 0 (0-389) | 0.01 | 14.1 (1.61-57.3) |
| $17 \mathrm{q}=$ | 1 | 0 (0-83) | 1 | 0 (0-169) | 1 | 0 (0-14.4) |
| 18+ | 0.031 | 33.6 (0.8-214) | 1 | 0 (0-306) | 0.00075 | 19 (3.63-63.5) |
| 19p= | 1 | 0 (0-159) | 1 | 0 (0-419) | 1 | 0 (0-30.2) |
| $19 \mathrm{q}=$ | 1 | 0 (0-133) | 1 | 0 (0-314) | 1 | 0 (0-24.9) |
| 20q- | 1 | 0 (0-47.3) | 1 | 0 (0-108) | 0.0013 | 9.1 (2.4-24.6) |
| 20q= | 1 | 0 (0-187) | 1 | 0 (0-360) | 1 | 0 (0-34.1) |
| 21+ | 1 | 0 (0-225) | 1 | 0 (0-437) | 0.1 | 9.59 (0.23-61.3) |
| $21 \mathrm{q}=$ | 1 | 0 (0-236) | 1 | 0 (0-462) | 1 | 0 (0-41.9) |
| 22+ | 0.042 | 24.4 (0.59-151) | 1 | 0 (0-218) | 0.2 | 4.5 (0.11-26.9) |
| 22q- | $1.2 \times 10^{-8}$ | 207 (49-654) | 1 | 0 (0-494) | $8.7 \times 10^{-6}$ | 37.4 (9.1-115) |
| 22q= | , | 0 (0-80.7) | 1 | 0 (0-172) | 1 | 0 (0-14.6) |
| -X | 1 | 0.82 (0.02-4.99) | I | 0 (0-13) | 0.38 | 0.54 (0.11-1.63) |

This table provides results of analogous analyses removing the restrictions we imposed on blood counts in our primary analyses (lymphocyte count $1-3.5 \times 10^{9} / \mathrm{L}$, red cell count $<6.1 \times 10^{12} / \mathrm{L}$ for males and $<5.4 \times 10^{12} / \mathrm{L}$ for females, platelet count $<450 \times 10^{9} / \mathrm{L}, \mathrm{RBC}$ distribution width $<15 \%$ ).

Supplementary Table 13. Risk increase for mortality during ~7-year follow-up conferred by mCAs.
(a) All-cause mortality risk increase conferred by mCAs

| mCA type | Cancer status at assessment | $P$ | HR (95\% CI) |
| :--- | :--- | :--- | :---: |
| Loss | No previous Dx | $1.3 \times 10^{-7}$ | $2.08(1.58-2.73)$ |
| Loss | Previous Dx | $5.4 \times 10^{-10}$ | $2.76(2.00-3.80)$ |
| CNN-LOH | No previous Dx | 0.01 | $1.36(1.07-1.71)$ |
| CNN-LOH | Previous Dx | $6.2 \times 10^{-5}$ | $1.81(1.35-2.42)$ |
| Gain | No previous Dx | 0.00021 | $1.92(1.36-2.70)$ |
| Gain | Previous Dx | 0.0055 | $1.97(1.22-3.19)$ |

(b) Non-cancer mortality risk increase conferred by mCAs

| mCA type | Cancer status at assessment | $P$ | HR (95\% CI) |
| :--- | :--- | :--- | :---: |
| Loss | No previous Dx | 0.0017 | $1.93(1.28-2.92)$ |
| Loss | Previous Dx | 0.00015 | $3.22(1.76-5.89)$ |
| CNN-LOH | No previous Dx | 0.19 | $1.26(0.89-1.79)$ |
| CNN-LOH | Previous Dx | 0.04 | $1.84(1.03-3.28)$ |
| Gain | No previous Dx | 0.096 | $1.59(0.92-2.75)$ |
| Gain | Previous Dx | 0.31 | $1.67(0.62-4.50)$ |

The first table provides numerical data plotted in Fig. 5d (from analyses of $n=128,854$ individuals without previous cancer diagnoses and $n=15,782$ with prevalent cancer), and the second provides analogous results excluding 2,687 of 4,619 deaths reported to be due to cancer.

Supplementary Table 14. Comparison of age and sex of mosaic individuals across studies.
(a) This study

| Copy change | $N$ (unique) | Mean age (s.e.m.) | Fraction male (s.e.) |
| :--- | ---: | ---: | ---: |
| Loss | 941 | $60.3(0.2)$ | $0.542(0.016)$ |
| CNN-LOH | 2208 | $58.8(0.2)$ | $0.490(0.011)$ |
| Gain | 578 | $61.5(0.3)$ | $0.587(0.021)$ |

(b) Jacobs et al. [1]

| Copy change | $N$ (unique) | Mean age (s.e.m.) | Fraction male (s.e.) |
| :--- | ---: | ---: | ---: |
| Loss | 186 | $68.2(0.6)$ | $0.790(0.030)$ |
| CNN-LOH | 278 | $68.0(0.6)$ | $0.665(0.028)$ |
| Gain | 87 | $66.9(1.1)$ | $0.793(0.044)$ |

(c) Laurie et al. [2]

| Copy change | $N$ (unique) | Mean age (s.e.m.) | Fraction male (s.e.) |
| :--- | ---: | ---: | ---: |
| Loss | 192 | $66.0(1.0)$ | $0.776(0.030)$ |
| CNN-LOH | 150 | $61.4(1.6)$ | $0.693(0.038)$ |
| Gain | 65 | $56.8(3.1)$ | $0.692(0.058)$ |

These tables compare age and sex among unique carriers of loss, CNN-LOH, and gain events in the current study, Jacobs et al. [1], and Laurie et al. [2]. We included all individuals for which both age and sex information were available.

Supplementary Table 15. Comparison of mosaic event detection rates across studies.

|  |  | Events | Mosaic | Mosaic | Number of each event type |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Study | $N$ | detected | individuals | Rate | Loss | CNN-LOH | Gain | Undetermined |
| This study (autosomal events) | 151,202 | 5562 | 4889 | $3.23 \%$ | 1118 | 2237 | 659 | 1548 |
| Jacobs et al. (2012) | 57,853 | 681 | 517 | $0.89 \%$ | 245 | 331 | 105 | 0 |
| Laurie et al. (2012) | 50,222 | 514 | 404 | $0.80 \%$ | 259 | 175 | 80 | 0 |
| Machiela et al. (2015) (TGSII) | 24,849 | 341 | 168 | $0.68 \%$ | 90 | 163 | 69 | 19 |
| Vattathil \& Scheet (2016) | 31,100 | 1141 | 901 | $2.90 \%$ | 202 | 30 | 70 | 839 |

Here we compare the number of autosomal events we identified to previous studies of mCAs using SNP genotyping arrays. We note that different studies have multiple differences that impact event detection, including (i) age distributions, (ii) cancer case/control distributions, (iii) genotyping platforms (previous studies used Illumina arrays), and (iv) analysis methods (only our study and Vattathil \& Scheet [8] used haplotype phase). The first two differences affect mosaicism rate, while the last two affect detection sensitivity.

Supplementary Table 16. Families with high-confidence non-reference variable number tandem repeat (VNTR) motifs at FRA10B.

| Family | Individual | Relationship | FRA10B reads | Primary motif | del(10q)? |
| :--- | :--- | :--- | ---: | :--- | :--- |
| 11336 | 02805 | father | 562 | VNTR-42-a | detected |
| 11336 | 02806 | daughter | 76 | VNTR-42-a | detected |
| 11542 | 00649 | daughter | 6 | NA |  |
| 11542 | 00656 | father | 15 | VNTR-42-a |  |
| 12212 | 04392 | son | 148 | VNTR-42-b |  |
| 12212 | 04401 | mother | 65 | VNTR-42-b |  |
| 12212 | 04410 | father | 74 | VNTR-42-b |  |
| 12651 | 06665 | mother | 162 | VNTR-42-d |  |
| 12759 | 06402 | father | 101 | VNTR-42-e |  |
| 13316 | 07467 | son | 55 | VNTR-38-a |  |
| 13316 | 07483 | father | 8 | NA |  |
| 13383 | 07471 | son | 15 | NA |  |
| 13383 | 07489 | father | 15 | NA |  |
| 13383 | 07490 | daughter | 31 | VNTR-43-d |  |
| 13564 | 08141 | son | 16 | VNTR-39-a |  |
| 13564 | 08142 | father | 26 | VNTR-39-a |  |
| 13564 | 08145 | son | 52 | VNTR-39-a |  |
| 13738 | 08952 | son | 908 | VNTR-43-a |  |
| 13738 | 08958 | mother | 1057 | VNTR-43-a |  |
| 13777 | 07980 | father | 1160 | VNTR-42-a | detected |
| 13777 | 07981 | son | 881 | VNTR-42-a | detected |
| 13892 | 09326 | son | 19 | NA |  |
| 13892 | 09330 | mother | 14 | NA |  |
| 13892 | 09339 | son | 16 | VNTR-43-e |  |
| 14154 | 10708 | son | 391 | VNTR-43-b |  |
| 14154 | 10712 | mother | 371 | VNTR-43-b |  |
| 14154 | 10718 | daughter | 346 | VNTR-43-b |  |
| 14415 | 12037 | son | 49 | VNTR-42-c |  |
| 14415 | 12046 | son | 30 | VNTR-42-c |  |
| 14415 | 12047 | father | 18 | VNTR-42-c |  |
| 14574 | 12604 | mother | 10 | NA |  |
| 14574 | 12609 | son | 22 | VNTR-43-c |  |
| 14574 | 12610 | daughter | 34 | VNTR-43-c |  |

We identified 12 distinct high-confidence primary VNTR motifs in 26 individuals from 14 families (Supplementary Note 8). We also list 7 additional family members sharing haplotypes containing non-reference VNTR motifs; the primary motif for these individuals is listed as NA (not assembled), but most of these individuals have read support for the VNTR motif on the shared haplotype (Fig. S8.2-1). The column "FRA10B reads" indicates the number of reads mapping to the target region 10:113002151-113002300 in hg19. Mosaic loss of 10q25.2-10qter was detectable in four individuals (Fig. 3).

