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Figure S1. Weighted LD curves from four coalescent simula ons of admixture scenarios with varying divergence
mes and dri between the reference popula on A′ and the true mixing popula on. In each case, gene flow

occurred 40 genera ons ago. In the low-divergence scenarios, the split point A′′ is immediately prior to gene flow,
while in the high-divergence scenarios, A′′ is halfway up the tree (520 genera ons ago). The high-dri scenarios are
dis nguished from the low-dri scenarios by a 20-fold reduc on in popula on size for the past 40 genera ons.
Standard errors shown are ALDER's jackknife es mates of its own error on a single simula on.
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weights as allele frequency differences between the admixed popula on and a single reference popula on R′, the
weighted LD curve a(d) has expected amplitude propor onal to (αF2(A,R′′)− βF2(B,R′′))2, whereR′′ is the
point along the A--B lineage at which the reference popula on branches. Note in par cular that as R′′ varies from
A toB, the amplitude traces out a parabola that starts at 2αβ3F2(A,B)2, decreases to a minimum value of 0, and
increases to 2α3βF2(A,B)2.
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Figure S3. Comparison of binning procedures used by ROLLOFF and ALDER. Instead of discre zing inter-SNP
distances, ALDER discre zes the gene c map before subtrac ng SNP coordinates.
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Figure S4. Weighted LD curve parameters from coalescent simula ons of con nuous admixture. In each simula on
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P.-R. Loh et al. 5 SI



α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

F3, A’’ at 0.75 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

ALDER, A’’ at 0.75 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

F3, A’’ at 0.5 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

ALDER, A’’ at 0.5 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

F3, A’’ at 0.25 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

α (A ancestry)

n 
(g

en
 s

in
ce

 a
dm

ix
tu

re
)

ALDER, A’’ at 0.25 down branch

0.5 0.6 0.7 0.8 0.9

40

100

160

220

280

A’

A’’

B’C’

B = B’’
n

1 − α

A’

A’’

B’C’

B = B’’
n

1 − α

A’

A’’

B’C’

B = B’’
n

1−α

Admixture not detected Admixture detected

Figure S5. Coalescent simula ons comparing the sensi vi es of the 3-popula on moment-based test for admixture
(f3) and the LD-based test implemented in ALDER. We varied three parameters: the age of the branch pointA′′, the
date n of gene flow, and the frac on α of A ancestry.

6 SI P.-R. Loh et al.



−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Basque

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Lahu

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

She

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Dai

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Naxi

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Surui

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Karitiana

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles
Q

ua
nt

ile
s 

of
 In

pu
t S

am
pl

e

Papuan

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

YRI

Figure S6. Q-Q plots comparing ALDER z-scores to standard normal on null examples. We show results from nine
HGDP popula ons that neither ALDER nor the 3-popula on test found to be admixed. We are interested in values of
z > 0; the Q-Q plots show that these values follow the standard normal reasonably well, tending to err on the
conserva ve side.
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Figure S7. Non-admixture-related demography producing weighted LD curves. The test popula on is C and
references areA′ andB′; the common ancestor of A′ and C experienced a recent bo leneck from which C has not
yet recovered, leaving long-range LD in C that is poten ally correlated to all three possible weigh ng schemes
(A′--B′, A′--C, andB′--C).
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Table S1. Dates of admixture es mated for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 9±1 20±1 49±2 107±5 195±9

Yoruba Han 9±1 21±1 50±2 107±6 191±12

Yoruba Papuan 9±1 21±1 49±3 118±8 223±23

San French 9±1 20±1 50±2 109±4 197±15

San Han 9±0 21±1 51±3 111±4 194±16

San Papuan 9±1 21±1 51±3 115±6 209±16

Yoruba 9±1 21±1 48±2 107±5 181±17

San 9±1 20±2 56±7 139±22 213±97

French 9±1 20±1 50±2 108±3 194±9

Han 9±0 21±1 52±2 110±6 192±17

Papuan 9±1 21±1 53±3 125±8 217±26

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

popula on itself as one reference. Note that standard errors shown are ALDER's jackknife es mates of its own error

on a single simula on (not standard errors from averaging over mul ple simula ons).
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Table S2. Dates of admixture es mated for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 10±0 21±1 50±2 107±7 193±19

Yoruba Han 10±0 20±1 51±2 109±10 220±32

Yoruba Papuan 10±0 22±1 53±3 111±11 233±65

San French 10±0 21±1 51±2 112±6 223±19

San Han 10±0 21±1 52±3 121±5 254±40

San Papuan 11±0 23±1 53±3 126±8 287±56

Yoruba 9±1 20±2 55±7 100±27 363±183

San 98±87 56±28 94±69 2±0 9±5

French 10±0 21±1 51±2 107±5 217±13

Han 11±0 21±1 52±2 111±7 234±25

Papuan 11±0 23±1 56±3 117±8 256±47

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

popula on itself as one reference. Note that standard errors shown are ALDER's jackknife es mates of its own error

on a single simula on (not standard errors from averaging over mul ple simula ons).
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Table S3. Amplitudes of weighted LD curves (mul plied by 106) for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 1173 1139±20 1203±40 1188±54 1283±100 1202±88

Yoruba Han 693 678±17 717±28 711±43 774±73 716±74

Yoruba Papuan 602 598±13 631±23 595±34 775±96 835±152

San French 1017 981±23 1028±34 1044±49 1128±70 1037±130

San Han 574 556±18 590±24 604±42 667±39 626±65

San Papuan 491 487±17 514±20 503±34 589±45 574±60

Yoruba 75 77±2 81±4 74±4 83±6 71±13

San 40 40±3 42±3 50±6 66±13 43±34

French 655 626±12 660±21 666±31 721±42 656±49

Han 312 304±10 324±14 332±23 364±25 332±36

Papuan 252 256±9 273±13 267±17 331±34 314±55

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

popula on itself as one reference. Expected amplitudes were computed according to formulas (10) and (11). Note

that standard errors shown are ALDER's jackknife es mates of its own error on a single simula on (not standard

errors from averaging over mul ple simula ons).
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Table S4. Amplitudes of weighted LD curves (mul plied by 106) for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 563 587±27 579±26 550±25 600±43 562±96

Yoruba Han 333 353±20 336±15 339±17 381±49 456±128

Yoruba Papuan 289 307±19 303±16 309±18 343±54 426±248

San French 488 522±25 512±22 488±25 519±28 625±89

San Han 276 305±18 291±12 289±16 338±23 464±132

San Papuan 236 266±18 262±13 254±12 306±38 486±186

Yoruba 6 6±1 6±1 7±1 7±3 44±89

San 1 16±15 8±3 10±7 -0±0 -1±1

French 454 473±19 471±18 450±19 481±19 566±55

Han 250 268±13 261±10 264±11 288±23 369±68

Papuan 212 231±14 233±13 243±11 276±35 366±125

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

popula on itself as one reference. Expected amplitudes were computed according to formulas (10) and (11). Note

that standard errors shown are ALDER's jackknife es mates of its own error on a single simula on (not standard

errors from averaging over mul ple simula ons).
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Table S5. Mixture frac on lower bounds on simulated 75% YRI / 25% CEU mixtures.

Ref 10 20 50 100 200

French 24.6±0.3 25.7±0.5 25.7±0.7 27.0±1.0 25.2±1.3

Russian 23.8±0.3 24.9±0.5 24.8±0.7 25.6±0.8 25.3±1.0

Sardinian 21.3±0.3 21.9±0.5 22.0±0.6 23.6±0.9 22.3±1.1

Kalash 14.7±0.2 15.5±0.4 15.5±0.5 16.4±0.6 15.6±0.9

Yoruba 73.6±0.7 74.8±0.4 74.0±0.6 76.2±1.3 73.8±3.4

Mandenka 50.5±0.6 51.2±1.0 50.4±1.4 54.9±2.0 60.8±5.6

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various single references. The first four rows are European surrogates and give lower bounds on

the amount of CEU ancestry (25%); the last two are African surrogates and give lower bounds on the amount of YRI

ancestry (75%). Note that standard errors shown are ALDER's jackknife es mates of its own error on a single

simula on (not standard errors from averaging over mul ple simula ons).
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Table S6. Mixture frac on lower bounds on simulated 90% YRI / 10% CEU mixtures.

Ref 10 20 50 100 200

French 10.5±0.4 10.5±0.3 9.9±0.3 10.6±0.4 12.3±1.0

Russian 10.2±0.3 10.0±0.3 9.7±0.3 10.3±0.5 11.8±0.9

Sardinian 9.3±0.3 9.2±0.3 8.7±0.3 9.5±0.4 10.3±1.2

Kalash 7.2±0.3 7.0±0.3 6.8±0.2 7.4±0.4 8.9±0.8

Yoruba 89.1±1.0 89.1±1.1 90.1±1.5 89.4±3.7 98.5±2.0

Mandenka 18.2±2.3 17.3±2.5 19.5±4.8 63.1±25.5 30.7±220.4

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using various single references. The first four rows are European surrogates and give lower bounds on

the amount of CEU ancestry (10%); the last two are African surrogates and give lower bounds on the amount of YRI

ancestry (90%). Note that standard errors shown are ALDER's jackknife es mates of its own error on a single

simula on (not standard errors from averaging over mul ple simula ons).
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Table S7. Dates of admixture es mated for simulated 75% YRI / 25% CEU mixtures.

Yoruba--French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 55±3 103±7 258±24

10 10±1 19±2 50±2 105±7 236±24

20 10±1 20±1 52±2 104±5 223±16

50 9±0 20±1 52±1 96±2 186±10

100 10±0 20±0 52±1 101±2 210±9

San--Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 58±5 107±11 283±73

10 10±1 19±2 54±3 114±8 219±64

20 10±1 21±1 55±2 115±6 219±46

50 9±0 21±1 54±1 107±5 213±20

100 9±0 21±1 53±1 105±5 216±13

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using varying numbers of admixed samples. Note that standard errors shown are ALDER's jackknife

es mates of its own error on a single simula on (not standard errors from averaging over mul ple simula ons).
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Table S8. Dates of admixture es mated for simulated 90% YRI / 10% CEU mixtures.

Yoruba--French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 11±2 21±2 52±6 101±17 253±42

10 11±1 19±1 48±4 94±8 241±46

20 11±1 21±1 48±3 102±8 209±30

50 11±0 21±1 48±2 98±5 202±21

100 10±0 20±1 50±1 99±4 185±15

San--Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 14±2 22±3 63±8 110±30 335±91

10 12±1 20±2 54±4 110±15 265±55

20 12±1 21±1 52±4 131±15 234±33

50 11±0 20±1 53±4 122±8 221±23

100 11±0 20±0 53±3 109±5 219±10

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 genera ons ago and show results from

runs of ALDER using varying numbers of admixed samples. Note that standard errors shown are ALDER's jackknife

es mates of its own error on a single simula on (not standard errors from averaging over mul ple simula ons).
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Table S9. Effect of SNP ascertainment on date es mates.

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 47±12 51±13 56±10 41±10

Uygur French Han 15±2 14±2 13±2 16±2

Hazara French Han 22±2 22±3 23±2 22±3

Melanesian Dai Papuan 93±24 62±15 76±13 70±18

Bedouin French Yoruba 27±3 23±3 23±3 24±3

Mbu Pygmy San Yoruba 33±12 33±6 41±14 30±8

BiakaPygmy San Yoruba 39±6 50±14 35±6 36±7

We compared dates of admixture es mated by ALDER on a variety of test triples from the HGDP using SNPs

ascertained as heterozygous in full genome sequences of one French, Han, San, and Yoruba individual (Panels 1, 2, 4,

and 5 of the Affymetrix Human Origins Array (P et al. 2012)). Standard errors are from a jackknife over the

22 autosomes.
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Table S10. Effect of SNP ascertainment on weighted LD curve amplitudes (mul plied by 106).

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 180±44 171±53 61±11 65±15

Uygur French Han 360±28 304±29 102±7 161±19

Hazara French Han 442±31 436±48 146±10 203±21

Melanesian Dai Papuan 868±277 559±150 207±51 312±91

Bedouin French Yoruba 227±32 196±25 104±11 146±13

Mbu Pygmy San Yoruba 64±23 78±14 83±26 82±18

BiakaPygmy San Yoruba 104±19 133±46 90±15 103±22

We compared amplitudes of weighted LD curves fi ed on a variety of test triples from the HGDP using SNPs

ascertained as heterozygous in full genome sequences of one French, Han, San, and Yoruba individual (Panels 1, 2, 4,

and 5 of the Affymetrix Human Origins Array (P et al. 2012)). Standard errors are from a jackknife over the

22 autosomes.
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File S1. Unbiased polyache es mator for weighted LD using the admixed popula on itself as one reference.
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Printed by Mathematica for Students

Mathema ca code and output are shown for compu ng the polyache sta s c that es mates the one-reference

weighted LD, E[(X − µx)(Y − µy)(µx − pA(x))(µy − pA(y))], where pA(·) are allele frequencies of the single

reference popula on and µx and µy denote allele frequencies of the admixed popula on. In the above, S(k)
0 :=

m(m− 1) · · · (m− k + 1) and Sr,s :=
∑m

i=1 X
r
i Y

s
i , wherem is the number of admixed samples and i ranges over

the admixed individuals, which have allele countsXi and Yi at sites x and y.
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File S2. FFT computa on of weighted LD.

In this note we describe how to compute weighted LD (aggregated over distance bins) in me

O(m(S +B logB)),

wherem is the number of admixed individuals, S is the number of SNPs, andB is the number of bins needed to span

the chromosomes. In contrast, the direct method of compu ng pairwise LD for each individual SNP pair requires

O(mS2) me. In prac ce our approach offers speedups of over 1000x on typical data sets. We further describe a

similar algorithm for compu ng the single-reference weighted LD polyache sta s c that runs in me

O(m2(S +B logB))

with the slight trade-off of ignoring SNPs with missing data.

Our method consists of three key steps: (1) split and factorize the weighted LD product; (2) group factored terms

by bin; and (3) apply fast Fourier transform (FFT) convolu on. As a special case of this approach, the first two ideas

alone allow us to efficiently compute the affine term (i.e., horizontal asymptote) of the weighted LD curve using inter-

chromosome SNP pairs.

TWO-REFERENCE WEIGHTED LD

We first establish nota on. Say we have an S × m genotype array {cx,i} from an admixed popula on. Assume for

now that there are no missing values, i.e.,

cx,i ∈ {0, 1, 2}

for x indexing SNPs by posi on on a gene c map and i = 1, . . . ,m indexing individuals. Given a set of weights wx,

one per SNP, we wish to compute weighted LD of SNP pairs aggregated by inter-SNP distance d:

R(d) :=
∑

|x−y|≈d
x<y

D2(x, y)wxwy =
1

2

∑
|x−y|≈d

D2(x, y)wxwy

whereD2 is the sample covariance between genotypes at x and y, the diploid analog of the usual LD measureD:

D2(x, y) :=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)

m∑
i=1

cx,i

m∑
j=1

cy,j

=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy, (1)

where we have defined

sx :=
m∑
i=1

cx,i.

Subs tu ng forD2(x, y), we have

R(d) =
1

2

∑
|x−y|≈d

(
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy

)
wxwy

=

 m∑
i=1

1

2(m− 1)

∑
|x−y|≈d

cx,iwx · cy,iwy

− 1

2m(m− 1)

∑
|x−y|≈d

sxwx · sywy. (2)
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We have thus rewri enR(d) as a linear combina on ofm+ 1 terms of the form∑
|x−y|≈d

f(x)f(y).

(The sum over i consists ofm such terms, and the final term accounts for one more.)

In general, sums of the form ∑
|x−y|≈d

f(x)g(y)

can be efficiently computed by convolu on if we first discre ze the gene c map on which the SNP posi ons x and y

lie. For nota onal convenience, choose the distance scale such that a unit distance corresponds to the desired bin

resolu on. We will compute ∑
⌊x⌋−⌊y⌋=d

f(x)g(y). (3)

That is, we divide the chromosome into bins of unit distance and aggregate terms f(x)g(y) by the distance between

the bin centers of x and y. Note that this procedure does not produce exactly the same result as first subtrac ng the

gene c posi ons and then binning by |x− y|: with our approach, pairs (x, y) that map to a given bin can have actual

distances that are off by as much as one full bin width, versus half a bin width with the subtract-then-bin approach.

However, we can compensate simply by doubling the bin resolu on.

To compute expression (3), we write∑
⌊x⌋−⌊y⌋=d

f(x)g(y) =
B∑

b=0

∑
⌊x⌋=b

∑
⌊y⌋=b−d

f(x)g(y)

=
B∑

b=0

 ∑
⌊x⌋=b

f(x)

 ∑
⌊y⌋=b−d

g(y)

 . (4)

Wri ng

F (b) :=
∑

⌊x⌋=b

f(x), G(b) :=
∑

⌊x⌋=b

g(x),

expression (4) becomes
B∑

b=0

F (b)G(b− d) = (F ⋆ G)(d),

a cross-correla on of binned f(x) and g(y) terms.

Computa onally, binning f and g to form F andG takesO(S) me, a er which the cross-correla on can be per-

formed inO(B logB) mewith a fast Fourier transform. The full computa on of them+1 convolu ons in equa on

(2) thus takes O(m(S + B logB)) me. In prac ce we o en have B logB < S, in which case the computa on is

linear in the data sizemS.

One addi onal detail is that we usually want to compute the average rather than the sum of the weighted LD

contribu ons of the SNP pairs in each bin; this requires normalizing by the number of pairs (x, y) thatmap to each bin,

which can be computed in an analogous manner with one more convolu on (se ng f ≡ 1, g ≡ 1). Finally, we note

that our factoriza on and binning approach immediately extends to compu ng weighted LD on inter-chromosome

SNP pairs (by pu ng all SNPs in a chromosome in the same bin), which allows robust es ma on of the horizontal

asymptote of the weighted LD curve.
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Missing Data The calcula ons above assumed that the genotype array contained no missing data, but in prac ce a

frac on of the genotype values may be missing. The straigh orward non-FFT computa on has no difficulty handling

missing data, as each pairwise LD term D2(x, y) can be calculated as a sample covariance over just the individuals

successfully genotyped at both x and y. Our algebraic manipula on runs into trouble, however, because if k individu-

als have amissing value at either x or y, then the sample covariance contains denominators of the form 1/(m−k−1)

and 1/(m− k)(m− k − 1)---and k varies depending on x and y.

One way to get around this problem is simply to restrict the analysis to sites with no missing values at the cost

of slightly reduced power. If a frac on p of the SNPs contain at least one missing value, this workaround reduces the

number of SNP pairs available to (1− p)2 of the total, which is probably already acceptable in prac ce.

We can do be er, however: in fact, with a li le more algebra (but no addi onal computa onal complexity), we

can include all pairs of sites (x, y) for which at least one of the SNPs x, y has no missing values, bringing our coverage

up to 1− p2.

We will need slightly more nota on. Adop ng eigenstrat format, we now let our genotype array consist of

values

cx,i ∈ {0, 1, 2, 9}

where 9 indicates a missing value. (Thus, {cx,i} is exactly the data that would be contained in a .geno file.) For

convenience, we write

c
(0)
x,i :=


cx,i if cx,i ∈ {0, 1, 2}

0 otherwise.

That is, c(0)x,i replaces missing values with 0s. As before we set

sx :=
∑

i:cx,i ̸=9

cx,i =
m∑
i=1

c
(0)
x,i

to be the sum of all non-missing values at x, which also equals the sum of all c(0)x,i because the missing values have

been 0-replaced. Finally, define

kx := #{i : cx,i = 9}

to be the number of missing values at site x.

We now wish to compute aggregated weighted LD over pairs (x, y) for which at least one of kx and ky is 0. Being

careful not to double-count, we have:

R(d) :=
∑

|x−y|≈d
x<y

kx=0 or ky=0

D2(x, y)wxwy

=
1

2

∑
|x−y|≈d

kx=0 and ky=0

D2(x, y)wxwy +
∑

|x−y|≈d
kx=0 and ky ̸=0

D2(x, y)wxwy

=
∑

|x−y|≈d

I[kx = 0]

1 + I[ky = 0]
D2(x, y)wxwy, (5)
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where the shorthand I[·] denotes a {0, 1}-indicator.

Now, for a pair of sites (x, y) where x has no missing values and y has ky missing values,

D2(x, y) =
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i −

1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy. (6)

Indeed, we claim the above equa on is actually just a rewri ng of the standard covariance formula (1), appropriately

modified now that the covariance is overm− ky values rather thanm:

• In the sum
∑m

i=1 cx,ic
(0)
y,i , missing values in y have been 0-replaced, so those terms vanish and the sum effec-

vely consists of the desiredm− ky products cx,icy,i.

• Similarly, sy is equal to the sum of them− ky non-missing cy,i values.

• Finally, sx −
∑m

i=1 I[cy,i = 9]cx,i represents the sum of cx,i over individuals i successfully genotyped at y,

wri en as the sum sx over allm individuals minus a correc on.

Subs tu ng (6) into expression (5) for R(d) and rearranging, we have

R(d) =
∑

|x−y|≈d

I[kx = 0]

1 + I[ky = 0]

(
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i

− 1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy

)
wxwy

=
m∑
i=1

∑
|x−y|≈d

(I[kx = 0]cx,iwx) ·
(

1

1 + I[ky = 0]

(
c
(0)
y,i +

I[cy,i = 9]sy
m− ky

)
wy

m− ky − 1

)

−
∑

|x−y|≈d

(I[kx = 0]sxwx) ·
(

sywy

(1 + I[ky = 0])(m− ky)(m− ky − 1)

)
.

The key point is that we once again have a sum ofm+ 1 convolu ons of the form
∑

|x−y|≈d f(x)g(y) and thus can

compute them efficiently as before.

ONE-REFERENCE WEIGHTED LD

When compu ng weighted LD using the admixed popula on itself as a reference with one other reference popula-

on, a polyache sta s c must be used to obtain an unbiased es mator (File S1). The form of the polyache causes

complica ons in our algebraic manipula on; however, if we restrict our a en on to SNPs with no missing data, the

computa on can s ll be broken into convolu ons quite naturally, albeit now requiringO(m2) FFTs rather thanO(m).

As in the two-reference case, the key idea is to split and factorize the weighted LD formula. We treat the terms

in the polyache separately and observe that each term takes the form of a constant factor mul plied by a product of

sub-terms of the form Sr,s, pA(x), or pA(y). We can use convolu on to aggregate the contribu ons of such a term

if we can factor it as a product of two pieces, one depending only on x and the other only on y. Doing so is easy for

some terms, namely those that involve only pA(x), pA(y), Sr,0, and S0,s, as the la er two sums depend only on x

and y, respec vely.
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The terms involving Sr,s with both r and s nonzero are more difficult to deal with but can be wri en as con-

volu ons by further subdividing them. In fact, we already encountered S1,1 =
∑m

i=1 cx,icy,i in our two-reference

weighted LD computa on: the trick there was to split the sum into its m components, one per admixed individual,

each of which could then be factored into x-dependent and y-dependent parts and aggregated via convolu on.

Exactly the same decomposi on works for all of the polyache terms except the one involving S2
1,1. For this term,

we write

S2
1,1 =

m∑
i=1

cx,icy,i

m∑
j=1

cx,jcy,j =
m∑
i=1

m∑
j=1

cx,icx,j · cy,icy,j ,

from which we see that spli ng the squared sum intom2 summands allows us to split the x- and y-dependence as

desired. The upshot is that at the expense ofO(m2) FFTs (and restric ng our analysis to SNPs without missing data),

we can also accelerate the one-reference weighted LD computa on.
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