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Supplementary Figure 1 

Comparison of in-sample imputation and standard GWAS imputation. 

Standard GWAS imputation differs from in-sample imputation in three ways. First, GWAS imputation usually involves imputing 
sequence data from a reference panel into a (genotyped but not sequenced) target sample, which typically requires phasing the 
sequenced reference (possibly using read information

36
), phasing the target sample (possibly using the phased reference), and 

imputing reference data into the target sample; in contrast, in-sample imputation involves only one sample, serving as both target and 
reference, that is simultaneously phased and imputed. Second, GWAS imputation pipelines produce probabilistic allele ‘dosage’ 

estimates, whereas phasing methods produce hard calls at missing genotypes (thus achieving suboptimal imputation R
2
). Third, typical 

GWAS impute sequenced SNPs into target samples that are fully typed at a set of ascertained array SNPs, whereas phasing methods 
impute missing data at ascertained SNPs. (The latter task may be slightly harder than the former, as genotyping arrays are sometimes 
optimized to minimize redundancy among ascertained SNPs; thus, the LD between a typical ascertained SNP and its closest 
ascertained proxy may be lower than the LD between a typical sequenced SNP and its closest ascertained proxy. On the other hand, 
the fact that rare variants on genotyping arrays are typically enriched in densely typed fine-mapping regions may make in-sample 
imputation easier.) For all of these reasons, different algorithms are typically used for phasing versus GWAS imputation (e.g., 
SHAPEIT

10,12 
versus IMPUTE

2,55
 and MaCH

4
 versus minimac

5,56
). 
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Supplementary Figure 2 

In-sample imputation accuracy of Eagle and SHAPEIT2. 

We randomly masked 2% of the genotypes in all N = 150,000 UK Biobank samples and phased the first 40 cM of chromosome 10 
using Eagle (on the full cohort) and SHAPEIT2 (on all samples at once with either K = 100 (default) or 200 states as well as in N = 
50,000 and 15,000 batches), imputing all masked genotypes in the process. (a) Accuracy of the imputed genotypes on the subset of 
120,000 UK samples curated by UK Biobank for GWAS (~80% of all samples), stratified by MAF in those samples. (b) Accuracy of the 
imputed genotypes on subsets of samples defined by self-reported ancestry, stratified by MAF in those samples. The five largest 
ancestry groups in the data set were British (137,178 samples), Irish (3,977), “any other white background” (4,760), Indian (1,324), and 
Caribbean (1,028). The British and Irish results were nearly identical (Supplementary Table 11), so we did not plot Irish results to 
improve readability. For the ancestry groups with <5,000 samples, we plotted results only for MAF bins corresponding to an expected 
minor allele count of ≥2 among masked samples. Error bars, s.e.m. Numerical data are provided in Supplementary Tables 9 and 11. 

 

Nature Genetics: doi:10.1038/ng.3571



Supplementary Information for “Fast and accurate long-range
phasing in a UK Biobank cohort”

Po-Ru Loh, Pier Francesco Palamara, Alkes L Price

Contents

Supplementary Note 2

1 Direct IBD-based phasing using long IBD 2
1.1 Detecting possible IBD: Scanning diploid genotypes for IBS>0 runs . . . . . . . . 2
1.2 Detecting probable IBD: Estimating likelihoods of IBD or not IBD . . . . . . . . . 4
1.3 Identifying consistent IBD: Trimming and pruning . . . . . . . . . . . . . . . . . 5
1.4 Making phase calls: Weighing the evidence . . . . . . . . . . . . . . . . . . . . . 7

2 Local phase refinement using long and short IBD 8
2.1 Detecting diploid-haploid long IBD: Scanning for IBS>0 runs . . . . . . . . . . . 8
2.2 Finding complementary short IBD: Locality-sensitive hashing . . . . . . . . . . . 9
2.3 Making phase calls: Settling disagreements and linking blocks . . . . . . . . . . . 9

3 Approximate HMM decoding 10
3.1 Identifying surrogate parents: Scanning for long IBD and complements . . . . . . 10
3.2 Finding a parsimonious path: Approximate HMM decoding . . . . . . . . . . . . . 11
3.3 Cleaning up errors: Using haplotype frequencies and respecting IBD . . . . . . . . 12

4 Appendix: In-sample imputation accuracy 14

References 16

Supplementary Tables 20

1

Nature Genetics: doi:10.1038/ng.3571



Supplementary Note
The Eagle algorithm is overviewed in Online Methods. Here, we provide additional methodolog-
ical details not fully described earlier. (To allow this note to be self-contained, we repeat some
content provided in Online Methods, filling in details omitted earlier due to space limitations.)

Eagle proceeds in three main steps. The first and second step each iterate through all individuals
in the data exactly once, updating each individual’s phase in turn; the third step performs two such
iterations. To help guide intuition, Figure 1 provides a snapshot of the progress of the algorithm
after each step for our first N=150K phasing benchmark (Figure 2).

1 Direct IBD-based phasing using long IBD

For each proband in turn, Eagle scans all other (diploid) individuals for long genomic segments
(>4cM) in which one (haploid) chromosome is likely to be shared IBD with the proband. Eagle
then analyzes these probable IBD matches for consistency, identifies a consistent subset, and uses
this subset to make phase calls. In our N=150K analyses, this step required ≈10% of the total
computation time (Supplementary Table 2) and achieved near-perfect phasing within long swaths
of genome covering most of each sample (corresponding to regions with IBD to several relatives)
(Fig. 1a). In more detail, our algorithm applies the following four procedures to each proband in
turn.

1.1 Detecting possible IBD: Scanning diploid genotypes for IBS>0 runs

First, we run a fast O(MN)-time scan against all other individuals for long runs of diploid geno-
types containing no opposite homozygotes (i.e., IBS>0). This filtering procedure is expedient
for analyses of very large data sets as it operates directly on diploid data and thus requires little
computation; a few variations of the approach have previously been developed [41,42]. Our imple-
mentation achieves a very low constant factor in its running time by using bit operations to analyze
blocks of 16–64 SNPs simultaneously and using dynamic programming to record the longest ten
IBS>0 stretches starting at each SNP block. We partition SNPs into blocks as follows: moving
sequentially across the genome, we initialize each new block to contain the next 16 SNPs. We
then continue to add subsequent SNPs to the block until it either contains 64 SNPs or reaches a
maximum span of 0.3cM; upon reaching either limit, we end the current block and begin the next
block.

2

Nature Genetics: doi:10.1038/ng.3571



Pseudocode for IBS>0 scan.
INPUT:

- genoBits[][]: (# SNP blocks) x (# samples) matrix of bit mask pairs (is0, is2)

each isX bit is set iff the genotype has allele count X

- proband: index of sample to use as proband

- numLong: number of longest IBS>0 runs to record for each start block

OUTPUT:

- topInds[][]: (# SNP blocks) x (numLong) matrix of sample indices

records longest numLong IBS>0 runs starting at each block

WORK ARRAYS:

runStarts[] := (# samples) array: start of current IBS>0 run for each sample

(algorithm iterates forward across the genome)

runStartFreqs[] := (# SNP blocks + 1) histogram (i.e., counts) of runStarts

runStartsNext[], runStartFreqsNext[]: storage arrays for updating the above

ALGORITHM:

N := (# samples)

B := (# SNP blocks)

runStarts[0..N-1] := 0 # initialize run starts and histogram

runStartFreqs[0] := N

runStartFreqs[1..B] := 0

for b = 0 to B-1 # iterate forward across the genome

runStartFreqsNext[0..B] := 0 # initialize histogram for next iteration

for i = 0 to N-1 # iterate over samples

if (genoBits[b][proband].is0 & genoBits[b][i].is2) |

(genoBits[b][proband].is2 & genoBits[b][i].is0) # bitwise opp-hom check

runStartsNext[i] := b+1 # opposite homozygous sites => end run

else

runStartsNext[i] := runStarts[i] # no opp-hom sites => continue run

end if

runStartFreqsNext[runStartsNext[i]]++

end for

for start = 0 to B

if runStartFreqsNext[start] < numLong && runStartFreqs[start] >= numLong

topInds[start][0..runStartFreqsNext[start]-1] :=

all samples i with (runStartsNext[i] == start) # runs continuing past b

topInds[start][runStartFreqsNext[start]..numLong-1] :=

subset of samples i with (runStarts[i] == start) # runs ending at b
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end if

end for

runStarts[0..N-1] := runStartsNext[0..N-1] # prepare to advance 1 block

runStartFreqs[0..B] := runStartFreqsNext[0..B]

end for

1.2 Detecting probable IBD: Estimating likelihoods of IBD or not IBD

Second, we compute an approximate likelihood ratio score for each potential IBD match identified
by the above scan. This procedure is similar in spirit to Parente2 [43], which likewise computes ap-
proximate likelihood ratio scores to increase sensitivity and specificity of IBD calls. Our approach
prioritizes speed over accuracy; instead of using a haplotype frequency model as in Parente2, we
use only allele frequencies and LD Scores [44] to compute an approximate likelihood ratio for the
observed match having occurred due to IBD versus by chance. We apply this procedure within a
seed-and-extend framework in which we begin with long IBS>0 matches but consider extending
them beyond IBS=0 sites (to tolerate genotyping errors). We record all extended matches with
length >4cM and likelihood ratio >10N (where N is the number of samples) as probable IBD
matches.

In detail, for each long IBS>0 match between the proband and another sample identified by
the scan (the “surrogate”), we first extend the match in each direction until we reach a SNP block
containing ≥2 IBS=0 sites. As we extend the match in either direction, we keep track of the
cumulative approximate log odds ratio for the match having arisen due to IBD (i.e., a shared
haplotype) rather than by chance. We estimate the log odds at a given SNP m as

approx log OR = crop[logPerr,− logPerr]

(
logP (gpro | gsur, IBD)− logP (gpro | no IBD)

LD Score(m)

)
, (2)

where:

• gpro is the proband’s genotype

• gsur is the surrogate sample’s genotype

• LD Score(m) =
∑

SNPs m′ within 1cM of m r2(m,m′) (ref. [44]) roughly corrects for the redundant
contributions of SNPs in LD [50, 51]

• P (gpro | no IBD) is the probability of observing the proband’s genotype by chance, i.e., the
frequency of the (diploid) genotype gpro
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• P (gpro | gsur, IBD) is the probability of observing the proband’s genotype conditional on
sharing one haplotype with the surrogate sample

• crop[logPerr,− logPerr]
denotes cropping the approximate odds ratio to be no more extreme in

either direction than the chance of a genotype error (the constant Perr, 0.003 by default).

For a SNP in Hardy-Weinberg equilibrium with ‘1’ allele frequency p and ‘0’ allele frequency
1− p, the probabilities P (gpro | no IBD) and P (gpro | gsur, IBD) are as follows:

gpro = 0 gpro = 1 gpro = 2

P (gpro | no IBD) (1− p)2 2p(1− p) p2

P (gpro | gsur = 0, IBD) 1− p p 0
P (gpro | gsur = 1, IBD) 1−p

2
1
2

p
2

P (gpro | gsur = 2, IBD) 0 1− p p

The approximate log odds ratio for a match is just the sum of per-SNP log odds ratios across
SNPs in the match; thus, as we extend a match, we update its cumulative log odds ratio simply
by adding the score of each successive SNP. We record the position in each direction at which the
cumulative score is maximized, and we use these positions as the start and the end of the final
match.

1.3 Identifying consistent IBD: Trimming and pruning

Third, we analyze the set of identified probable IBD matches for consistency, truncating or elimi-
nating matches until we reach a consistent set. For any pair of overlapping probable IBD matches
between the proband and potential surrogate parents 1 and 2, the implied shared haplotypes can be
(a) consistent with the proband sharing the same haplotype with both surrogates 1 and 2, (b) con-
sistent with the proband sharing one of its haploytpes with surrogate 1 and other with surrogate 2,
or (c) inconsistent with both of these possibilities. We first identify pairs of overlapping probable
IBD matches in which scenario (c) occurs; for these pairs, we assume the longer match is correct
and trim the shorter match until consistency under either scenario (a) or (b) is achieved. If any
match drops below 3cM after during this trimming procedure, we discard the match. At the end
of the procedure, all remaining pairs of trimmed matches are consistent. We then perform a final
check for global consistency of implied phase orientations among all matches, i.e., we reduce (if
necessary) to a subset of matches that can each be assigned to either a surrogate maternal haplotype
or a surrogate paternal haplotype in a manner that respects pairwise constraints (a) and (b).

Explicitly, for each pair of matches with nonempty intersection, we look for sites in their in-
tersection at which the proband is heterozygous and both surrogates 1 and 2 are homozygous
(“het-hom-hom sites”). If both surrogates are homozygous for the same allele, they map to the
same haplotype (maternal or paternal) of the proband (situation (a) above); otherwise, they map to
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opposite haplotypes (situation (b) above). In practice, we sometimes observe sites of both types
(situation (c) above), indicating an error in at least one of the IBD calls (or a genotype error); typi-
cally, the reason is that one IBD call includes a true sub-region of IBD but extends beyond it. We
deal with this situation by identifying the longest consistent sub-region in the intersection of the
calls (i.e., the longest stretch of genome containing only het-hom-hom sites at which surrogates
1 and 2 are the same or only het-hom-hom sites at which surrogates 1 and 2 are opposite). We
then trim the shorter of the two IBD calls until the intersection of the IBD calls contains only the
consistent sub-region. (We trim the shorter IBD call because the longer IBD call is more likely to
be correct.)

After trimming, we are left with a set of pairwise consistent IBD calls (between the proband
and various surrogates), but there is still a chance that the set as a whole may not be consistent:
each IBD call must ultimately map to either the proband’s maternal haplotype or the proband’s
paternal haplotype, and this mapping must be simultaneously consistent for all pairs of calls. In
graph theoretic language, if we let the IBD calls be vertices of a graph, then we wish to bicolor the
graph while respecting same-color constraints (represented by one set of edges connecting pairs
of calls in situation (a) above) and opposite-color constraints (represented by another set of edges
connecting pairs of calls in situation (b) above). Checking for the existence of a valid coloring
requires only a search through the graph. Thus, we prune our set of trimmed IBD calls to a
globally consistent subset by starting with the empty subset and iteratively attempting to add each
IBD call to the set; we iterate through the IBD calls from longest to shortest. At each iteration, we
run a breadth-first search to check whether the augmented subset is still globally consistent; if so,
we augment the subset, and if not, we discard the IBD call.

Pseudocode for pruning trimmed IBD calls to a consistent subset.

INPUT:

- IBDcalls[]: list of IBD calls (longest to shortest)

- constraints[][]: pairwise sign constraints among IBD calls (1=same, -1=opp)

OUTPUT:

- IBDpruned[]: pruned list of IBD calls consistent with constraints

ALGORITHM:

IBDpruned := [] # initialize list of consistent IBD calls

for u in IBDcalls # iterate through IBD calls (longest to shortest)

IBDpruned.insert(u)

if checkSigns(IBDpruned,constraints) == false

IBDpruned.erase(u)

end if

end for
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###

function checkSigns(IBDpruned,constraints)

signs[..] := 0 # initialize signs to 0; signs will become 1 or -1

q := [] # initialize breadth-first search queue

for u in IBDpruned

if signs[u] == 0 # IBD call u has not been processed

q.push(u)

while !q.empty() # breadth-first search

v := q.pop()

for w in constraints[v]

if signs[w] != 0 # IBD call w has been processed: check consistency

if constraints[v][w] != signs[v] * signs[w]

return false # failure: inconsistency found

end if

else # IBD call w has not been processed

signs[w] := signs[v] * constraints[v][w]

q.push(w)

end if

end for

end while

end if

end for

return true # success: no inconsistencies found

end

1.4 Making phase calls: Weighing the evidence

Fourth, we use the surrogate maternal and paternal haplotypic assignments of probable IBD regions
to make phase calls. Whenever at least one surrogate is homozygous at a proband het, we use
that surrogate to phase the site. (If homozygous surrogates disagree on the phasing of a site,
we always defer to the longest surrogate with longest IBD to the proband.) If all surrogates are
heterozygous, we make a probabilistic phase call based on the allele frequency of the SNP and
the difference between the numbers of (heterozygous) surrogate maternal haplotypes (nmat) and
surrogate paternal haplotypes (npat). Specifically, let p be the minor allele frequency of the SNP.
If we condition on the proband’s maternal allele being the minor allele, then the probability of
observing hets in all nmat maternal surrogates is (1− p)nmat and the probability of observing hets
in all npat paternal surrogates is pnpat (assuming only one haplotype is shared per IBD match and
non-shared haplotypes are independent). If we condition on the proband’s paternal allele being the
minor allele, the probabilities are pnmat and (1 − p)npat . Thus, the odds ratio of the minor allele
being maternal vs. paternal is ((1−p)/p))nmat−npat . We randomly hard-call step 1 phase according
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to this odds ratio, and we also record the call probability as an estimate of phase confidence to use
in step 2 along with the hard call.

Finally, we note one additional subtlety: occasionally, the proband may share both haplotypes
IBD with a surrogate (e.g., a sibling). In such situations, hets in the surrogate provide no proba-
bilistic information for phasing hets in the proband. Fortunately, regions of double-IBD are easy
to identify with high sensitivity and specificity (as the diploid genotypes must exactly match); we
use an approximate likelihood ratio score similar to our approach for calling single-IBD, and we
exclude likely double-IBD regions from the calculation above.

2 Local phase refinement using long and short IBD

For each diploid proband in turn, Eagle analyzes overlapping ≈1cM windows of genome, search-
ing for pairs of haplotypes (from the output of step 1) that approximately sum to the diploid
proband within the window. Eagle then makes phase calls according to the haplotype pairs that
most closely match the proband. In our N=150K analyses, this step required ≈20% of the total
computation time (Supplementary Table 2) and reduced the switch error rate to ≈1.5% (Fig. 1b).
In more detail, our algorithm applies the following three procedures to each proband in turn.

2.1 Detecting diploid-haploid long IBD: Scanning for IBS>0 runs

First, we run a fast O(MN)-time scan to find probable IBD with other haploid chromosomes
(according to phase calls made in step 1). This procedure begins analogously to the first component
of step 1; again, we look for long segments of IBS>0 (now between the diploid proband and
haploid potential surrogates), now allowing a single mismatch site (IBS=0) within runs. We then
attempt to extend the identified seed matches and record the ten longest matches covering each
SNP block (as defined in step 1).

Explicitly, we run a fast O(MN)-time scan between the (diploid) proband and the 2N − 2

haploid chromosomes of the remaining N − 1 samples in the cohort (according to the hard-called
phase from step 1, with random phase calls in segments lacking IBD); we ignore the phase calls
made for the proband in step 1. At each SNP block, we identify the 20 samples with the longest
runs of IBS>0 to the proband (allowing≤1 error) starting exactly at that block (i.e., with IBS=0 in
the previous block). (Here, IBS>0 is equivalent to IBS=1 because we are comparing the proband
to haploid surrogates.) We treat the identified matches as seeds, and we extend each seed forward
and backward until we reach a block containing ≥4 IBS=0 sites (among the 16–64 sites in the
block; most blocks have SNP counts in the upper end of this range). The idea behind this exten-
sion procedure is to retain sensitivity despite errors in the step 1 phase calls; even in well-phased
regions (with IBD to many surrogates), step 1 phasing is error-prone at common SNPs for which
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all surrogates are hets. Finally, among all extended IBD matches between the proband and haploid
surrogates produced in this manner, we record for each block the longest 10 extended matches
covering that block.

2.2 Finding complementary short IBD: Locality-sensitive hashing

Second, for each window of three consecutive blocks (containing a total of up to 192 SNPs span-
ning up to 0.9cM), and for each of the ten longest haplotype matches covering the center block in
the window, we search for haplotypes approximately complementary (within the window) to the
long haplotype. The idea is that often, only one of the proband’s haplotypes belongs to a long
IBD tract (several cM); however, in such cases, the other haplotype is often shared in a short IBD
tract (≈1 cM), allowing confident phase inference if the complementary haplotype can be found
to exist. Looking for a complementary haplotype in an error-tolerant manner amounts to perform-
ing approximate nearest neighbor search in Hamming space; to do so, we apply locality-sensitive
hashing (LSH) [45, 46]. In brief, LSH overcomes the “curse of dimensionality” by building mul-
tiple hash tables (here, ten per window) using different random subsets of SNPs (here, up to 32);
then, when searching for a complementary haplotype, chances are high that at least one hash table
will not include any SNPs with errors, allowing the approximate match to be found.

Explicitly, for each 3-block window, we build 10 hash tables containing B = 23, 24, . . . , 32
SNPs selected independently at random from all MAF≥2% SNPs in the window. For each hash
table, we hash each of the 2N haplotypes called in step 1 as a B-bit string encoding major/minor
allele status at the selected B SNPs. For memory efficiency, we store at most 99 haplotype indices
per hash key; if >99 haplotypes hash to the same key (which occurs for common haplotypes), we
store a random 99-element subset of these haplotype indices. Because the hash table is static once
created, we further optimize memory by storing occurring keys in a sorted array, each of which
contains a pointer to the list of haplotype index values corresponding to the key; to perform hash
lookups, we run binary searches on the sorted key array. The total number of bytes required by this
implementation is 12K + 4V , where K is the number of keys and V the number of stored values.

2.3 Making phase calls: Settling disagreements and linking blocks

Third, for each 3-block window, we select the lowest-error complementary haplotype pair for that
window (i.e., the pair of surrogate haploid parents—one found via long IBD and the other identified
by LSH—with fewest conflicts between the sum of the haploid surrogates vs. the diploid proband
over the 3-block window). We use this surrogate parental pair to phase the block in the center
of the window. This procedure is fairly straightforward, with the only subtleties being that (i) to
avoid simply copying phase from double-IBD matches, we require the surrogate haploid parents
to be derived from distinct individuals; (ii) to phase error hets (i.e., proband hets for which both
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surrogate haplotypes have the same allele), we defer to the surrogate with higher confidence (using
the call probabilities saved from step 1); and (iii) when transitioning from one block to the next,
we choose the orientation of the next complementary haplotype pair that best continues the current
surrogate maternal and paternal haplotypes. More precisely, for (iii), we identify the five proband-
het SNPs closest to the block transition and compare how these SNPs are phased by the surrogate
parental pair for the previous block vs. the next block; we then decide which orientation to use for
the next surrogate parental pair relative to the previous based on majority vote (over the five SNPs
near the transition).

3 Approximate HMM decoding

For each diploid proband in turn, Eagle identifies candidate surrogate parental haplotypes (from
the output of step 2) for use within an HMM (similar to the Li-Stephens model [47]). Eagle then
computes an approximate maximum likelihood path through the HMM using a modified Viterbi
algorithm (aggressively pruning the state space to increase speed) and calls phase according to
the HMM decoding. Finally, Eagle post-processes the phase calls to correct sporadic errors by
explicitly taking into account haplotype frequencies and long IBD. Eagle runs two iterations of this
entire procedure, and Eagle performs each iteration in 10 batches of N /10 samples, updating hard-
called haplotypes available as surrogates and all derivative data (e.g., hash tables) after each batch.
In our N=150K analyses, this step required ≈70% of the total computation time (Supplementary
Table 2) and reduced the switch error rate to ≈0.4% after the first HMM iteration and ≈0.3% after
the second (Fig. 1c,d). In more detail, our algorithm applies the following three procedures to each
proband in turn (in each HMM iteration).

3.1 Identifying surrogate parents: Scanning for long IBD and complements

First, we compile a set of reference haplotypes for the proband for each SNP block. This procedure
begins analogously to the first component of step 2, identifying long haplotype matches using a fast
O(MN) search within a seed-and-extend framework. To ensure that both maternal and paternal
surrogates are represented among the reference haplotypes, we augment the set of long haplotype
matches with complementary haplotypes found using LSH. In total, we store K≤80 reference
haplotypes per block.

In more detail, we begin by running the fast O(MN) diploid-haploid IBS>0 search algorithm
used in step 2 (on updated haploid chromosomes corresponding to current phase calls); in the first
iteration of this step, we record the 100 longest 1-err IBS>0 runs starting at each block, and in the
second iteration, we additionally record the 100 longest 0-err IBS>0 runs starting at each block.
We then apply the seed extension algorithm described in step 2 with a more stringent extension
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criterion: we extend only until we reach a block with ≥2 IBS=0 sites.
The matches identified above serve as a starting point for constructing a set of K≤80 reference

haplotypes specific to each block (for subsequent use in HMM decoding on the proband); for
each block b, we construct the final reference set as follows. First, we include a total of up to 20
haplotypes from among the longest 1-err (or in the second iteration, 1-err and 0-err) IBS>0 runs
starting at block b or block b+ 1. Second, we augment the reference set with the longest extended
matches covering block b until we reach a total of 40 references or we run out of extended matches
covering block b. Third, for each of the ≤40 reference haplotypes selected thus far, we attempt to
find another haplotype that is exactly complementary to it within the region starting from a random
SNP within block b through the end of block b + 2 (or as far as possible if no such haplotype
exists). We do so by using LSH as in step 2 with slightly different parameters aimed at increasing
sensitivity to find matches on shorter scales: we hash SNP sets spanning intervals ranging from 3
blocks (as in step 2) down to only 1 block, and we include four additional hash tables. The overall
intuition is that the first two groups of references include haplotypes with the longest IBD possible
to the proband, while the third group ensures that at least short-range surrogates are available for
both the maternal and paternal chromosomes (even if one side lacks IBD).

3.2 Finding a parsimonious path: Approximate HMM decoding

Second, we compute an approximate Viterbi decoding of an HMM similar to the Li-Stephens
model [47] using the sets of local reference haplotypes found above. A path through the HMM
consists of a sequence of state pairs (one maternal reference haplotype and one paternal reference
haplotype) at each location; we score a path according to the number of transitions on the maternal
side, the number of transitions on the paternal side, and the number (and types) of Mendel errors
between the proband and surrogate parents. An exact Viterbi decoding of this HMM using dynamic
programming requires O(MK3) time, which is too expensive for us; instead, we perform the
dynamic programming within a beam search, pruning the search space from K2 state pairs to
the top P=100–200 state pairs at each location (100 in the first decoding iteration, 200 in the
second) and thus limiting the complexity to O(MKP ). We then phase the proband according to
the approximate Viterbi path.

In more detail, we first consider the diploid analog of the original Li-Stephens model [47] in
which HMM states are ordered pairs of haplotype indices (each selected from among the 2N − 2

non-proband haplotypes, for a total of O(N2) possible state pairs) and we wish to find the max-
imum likelihood path (i.e., sequence of state pairs) through the M SNPs being phased. This
computation can be performed using the Viterbi algorithm in O(MN4) time if we naively allow
all-to-all transitions between state pairs and O(MN3) time if we allow only transitions in either
the maternal or the paternal references (but not both) from one SNP to the next. Either way, the full
computation is far too expensive for large N and M , so we make several approximations. First,

11

Nature Genetics: doi:10.1038/ng.3571



instead of performing the full Viterbi dynamic programming search, we perform a beam search: at
each position, we prune the search to the top (most likely) P state pairs. Second, at each position,
instead of considering transitions to all 2N − 2 reference haplotypes, we only consider transitions
to the K references selected above for that position. These approximations reduce the computa-
tional complexity to O(MKP ). Finally, for a further constant-factor reduction in cost, we perform
computations in blocks of 16–64 SNPs as elsewhere, allowing only one state transition (for either
the maternal or paternal reference but not both) within each block.

The details of the model—i.e., score penalties for transitions and Mendel errors, equivalent
to HMM transition and emission probabilities—are as follows. We assess a score penalty of 3
for each transition between references, a penalty of 2 for Mendel errors at proband hets, and a
penalty of 1 for Mendel errors at non-hets. Under this very basic model, we observed that the best-
scoring path already yielded very accurate phase, but we noticed a tendency for occasional switch
errors to occur near block boundaries when the best-scoring path included transitions in both the
maternal and paternal references in rapid succession, one at the end of block b and the other at the
beginning of block b+1. We therefore added a penalty for transitions near block boundaries. (The
engineering details are a bit complex, but the penalty is roughly equivalent to an added penalty of
3 for transitions within 4 SNPs of a boundary, 2 for transitions within 8 SNPs of a boundary, and
1 for transitions within 12 SNPs of a boundary; for details, see the computeSwitchScore()
function in the Eagle code.)

Overall, the Eagle HMM is very rudimentary compared to the HMMs used by advanced HMM-
based methods such as Beagle [8], HAPI-UR [11], and SHAPEIT2 [12]. For phasing very large
samples containing long IBD, our intuition is that precise probabilistic modeling is unnecessary:
once long IBD has been identified, the right phasing should be fairly obvious even to a crude
model, and the key is to rapidly identify and use such IBD. Our approach is optimized for this
purpose; the approximations we use lend themselves to fast (approximate) Viterbi decoding rather
than careful MCMC sampling.

3.3 Cleaning up errors: Using haplotype frequencies and respecting IBD

Third, we post-process the phase calls to correct sporadic errors. Within each window of three
consecutive blocks, we use LSH to determine the frequencies of ≈1cM haplotypes that match
the Viterbi-inferred maternal and paternal haplotypes up to at most two errors. In rare cases, the
haplotype frequencies give strong evidence to flip the phase of one or two SNPs, in which case we
override the Viterbi phase call. Finally, we also check the Viterbi-inferred maternal and paternal
haplotypes for consistency with the longest previously-identified IBD segments; in rare cases when
the Viterbi phasing requires a phase switch >1.5cM from either end of a probable IBD segment,
we override the switch.

Explicitly, for each block, we run LSH queries (in the 3-block window centered at that block)
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for the hash keys of the maternal and paternal haplotypes under the Viterbi phasing. The queries
return haplotypes matching the Viterbi parental haplotypes at the 23–32 SNPs used in each hash
table; however, these haplotypes may differ from the input Viterbi haplotypes at remaining SNPs.
We record haplotypes differing from the input Viterbi haplotypes at ≤2 sites, and at each proband
het, we use these haplotypes to generate frequency tables for the ref/alt allele according to the
near-matches to each Viterbi haplotype. We then compute an odds ratio for keeping vs. flipping
the Viterbi phasing of the proband het; if the odds ratio exceeds a threshold of 10, we flip the
phasing. (We reduce the threshold to 2 at Mendel error SNPs.)
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4 Appendix: In-sample imputation accuracy

To project the imputation accuracy that will be achievable in the UK population using LRP-based
methods once a reference panel of N=150K sequenced UK samples becomes available, we per-
formed in-sample imputation of masked genotypes in the UK Biobank data set. Explicitly, we
randomly masked 2% of all genotypes, phased the modified data set (automatically obtaining im-
puted genotypes at masked SNPs), and assessed concordance between imputed and actual geno-
types. This procedure is commonly used to assess accuracy of phasing methods [1, 9, 10], and for
very large sample sizes, enough genotypes are masked per SNP (here, ≈3,000) that R2 between
imputed and actual genotypes can be assessed across the minor allele frequency (MAF) spectrum
(e.g., a 0.1% variant is expected to have a minor allele count of 6 among 3,000 masked genotypes).
We note that from an engineering perspective, in-sample imputation differs from standard GWAS
imputation in a few important ways (detailed below); however, from a statistical perspective, in-
sample imputation on N samples is similar to standard GWAS phasing and imputation on a target
sample using a reference panel of size N : both tasks entail copying shared haplotypes (identified
based on data at typed SNPs) from a set of N samples (Supplementary Fig. 1).

We benchmarked in-sample imputation using Eagle and SHAPEIT2 (the two most accurate
phasing algorithms according to our previous benchmarks). For Eagle, we imputed all N=150K
samples together (Eagle 1x150K), and for SHAPEIT2, we performed imputation in 10 batches
of N=15K samples (SHAPEIT2 10x15K), 3 batches of N=50K samples (SHAPEIT2 3x50K), or
in a single batch of all N=150K samples (SHAPEIT2 1x150K) using either default parameters
(K=100) or twice the default number of conditioning states (K=200). We then assessed imputa-
tion R2 stratified by MAF, first focusing on accuracy within N=120K genetically homogeneous
samples curated by UK Biobank for GWAS (a subset of the 88% of samples who self-reported
British ethnicity; see Online Methods and URLs). We observed that both Eagle and SHAPEIT2
1x150K analyses achieved mean in-sample imputation R2>0.75 down to a MAF of 0.1%, with
Eagle slightly more accurate than SHAPEIT2 K=100 across all MAF bins and of similar ac-
curacy to SHAPEIT2 K=200 (Supplementary Fig. 2a and Supplementary Table 9); in contrast,
SHAPEIT2 10x15K analysis achieved R2<0.6 for MAF 0.1%-variants. We confirmed these re-
sults in chromosome-scale analyses as before (Supplementary Table 10).

We further investigated in-sample imputation performance of Eagle and SHAPEIT2 as a func-
tion of self-reported ethnicity. As UK Biobank genotyping and QC analyses indicated that self-
reported ethnicity aligned closely with genetic ancestry (see URLs), we stratified our in-sample
imputation assessment by self-reported ethnicity (Supplementary Fig. 2b and Supplementary Ta-
ble 11). We observed that in-sample imputation R2 for British and Irish samples (comprising 88%
and 3% of the samples) closely matched our previous results, as expected, while accuracy was
lower (but still slightly higher for Eagle vs. SHAPEIT2 1x150K, K=100 analyses) in samples who
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reported “any other white background” (3%). Accuracy was lowest in non-white samples, and in
these samples, SHAPEIT2 1x150K achieved slightly higher in-sample imputation accuracy than
Eagle, as expected for low amounts of IBD. Consistent with these findings, we observed a modest
decrease in in-sample imputation R2 across all methods (with little relative change between meth-
ods) when evaluated on all N=150K UK Biobank samples versus the N=120K curated British
samples in our main analyses (Supplementary Tables 9 and 10).

As noted above, some caution is warranted in interpreting these results, as in-sample impu-
tation of missing data distributed across SNPs generally does not arise in GWAS (except in the
context of low-coverage sequencing [52–54]). Standard GWAS imputation differs from in-sample
imputation in three ways (Supplementary Fig. 1). First, GWAS imputation usually involves im-
puting sequence data from a reference panel into a (genotyped but not sequenced) target sample,
which typically requires phasing the sequenced reference (possibly using read information [37]),
phasing the target sample (possibly using the phased reference), and imputing reference data into
the target sample; here, we have only one N=150K sample as both target and reference that we
simultaneously phase and impute. Second, GWAS imputation pipelines produce probabilistic al-
lele “dosage” estimates, whereas phasing methods produce hard calls at missing genotypes; thus,
R2 using imputed allele dosages is expected to be even higher. Third, typical GWAS impute se-
quenced SNPs into target samples that are fully typed at a set of ascertained array SNPs; here, we
imputed masked data in ≈98%-typed array SNPs. (The latter task may be slightly harder than the
former, as genotyping arrays are sometimes optimized to minimize redundancy among ascertained
SNPs [55]; additionally, phasing methods may not be optimized for analysis of genotype data with
a uniform 2% missing rate. On the other hand, the fact that rare variants on genotyping arrays are
typically enriched in densely-typed fine-mapping regions may make in-sample imputation easier.)
For all of these reasons, different algorithms are typically used for phasing vs. GWAS imputa-
tion (e.g., SHAPEIT [10, 12] vs. IMPUTE [2, 56], MaCH [4] vs. minimac [5, 57]). Despite these
caveats, our results give reason for optimism that when sequenced ancestry-matched reference pan-
els of size N=150K become available, high-accuracy imputation of rare variants will be possible
using LRP-based approaches such as Eagle: we expect that efficient imputation of MAF>0.1%
variants at R2>0.75 will be possible using Eagle and appropriate extensions (see Discussion).
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Supplementary Table 1. Computational cost and accuracy of phasing methods.

(a) Running time and memory cost
N Eagle SHAPEIT2 HAPI-UR Beagle
15K 0.5 hr / 0.9 GB 4.2 hr / 1.7 GB 2.8 hr / 6.3 GB 19.5 hr / 9.9 GB
50K 2.7 hr / 2.6 GB 28.2 hr / 5.5 GB 18.9 hr / 18.1 GB 335.3 hr / 21.4 GB
150K 15.0 hr / 7.0 GB 207.6 hr / 16.5 GB 181.0 hr / 48.1 GB –

(b) Switch error rate
N Eagle SHAPEIT2 HAPI-UR Beagle
15K 1.50% (0.094%) 1.15% (0.075%) 1.94% (0.09%) 1.50% (0.074%)
50K 0.628% (0.048%) 0.564% (0.05%) 1.26% (0.077%) 0.896% (0.059%)
150K 0.308% (0.034%) 0.303% (0.035%) 0.755% (0.063%) –

(c) Running time for phasing N=150K samples in batches
Batches Eagle SHAPEIT2 HAPI-UR Beagle
10x15K 0.2 days 1.8 days 1.2 days 8.1 days
3x50K 0.3 days 3.5 days 2.4 days 41.9 days
1x150K 0.6 days 8.7 days 7.5 days –

(This table provides numeric data plotted in Figure 2.) We benchmarked Eagle and existing
phasing methods on N=15K, 50K, and 150K UK Biobank samples and M=5,824 SNPs on
chromosome 10. (a) Run times and memory are reported for runs using up to 10 cores of a 2.27
GHz Intel Xeon L5640 processor and up to two weeks of computation. (b) Mean switch error
rates (s.e.m.) are over 70 European-ancestry trios. (c) Run times for phasing N=150K samples in
10 batches of 15K samples, 3 batches of 50K samples, and 1 batch of 150K samples (i.e., 10x, 3x,
and 1x the run times reported in (a)). All methods except HAPI-UR supported multithreading. As
the HAPI-UR documentation suggested merging results from three independent runs with
different random seeds, we parallelized these runs across three cores. (For the N=150K analysis,
HAPI-UR encountered a failed assertion bug for some random seeds, so we needed to try six
random seeds to find three working seeds. We did not count this extra work against HAPI-UR.)
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Supplementary Table 2. Detailed run time breakdown of Eagle at varying sample sizes.

(a) N=15K samples
Step 1 Step 2 Step 3 Total

O(MN 2) component 0.5 min 1.1 min 2.6 min 4.2 min
Other computation 0.3 min 0.9 min 23.9 min 25.1 min
Total 0.9 min 1.9 min 26.5 min 29.2 min

(b) N=50K samples
Step 1 Step 2 Step 3 Total

O(MN 2) component 6.7 min 13.3 min 30.3 min 50.3 min
Other computation 2.5 min 5.0 min 103.4 min 110.9 min
Total 9.2 min 18.3 min 133.8 min 161.2 min

(c) N=150K samples
Step 1 Step 2 Step 3 Total

O(MN 2) component 66.2 min 153.3 min 290.7 min 510.2 min
Other computation 23.5 min 21.8 min 336.4 min 381.6 min
Total 89.7 min 175.1 min 627.1 min 891.9 min

These table provides detailed run time breakdowns of Eagle’s three algorithmic steps in runs on
N=15K, 50K, and 150K UK Biobank samples and M=5,824 SNPs on chromosome 10. Run
times are reported for runs using up to 10 cores of a 2.27 GHz Intel Xeon L5640 processor. Each
of the three steps—(1) direct IBD-based phasing, (2) local phase refinement, and (3) approximate
HMM decoding—involve an all-pairs O(MN 2) computation followed by an additional
computation that is inexpensive for step 1 and scales closer to linearly in sample size (N ) for
steps 2 and 3. (The tables above do not include time needed to write output, which increases total
run times by ≈1%.)
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Supplementary Table 3. Phasing performance on GERA data.

Method Run time Memory Switch error rate
Eagle 15.8 hr 15.7 GB 0.820% (0.035%)
SHAPEIT2 229.7 hr 44.4 GB 0.704% (0.033%)

We phased chromosome 10 (32,741 SNPs) for N=60K European-ancestry GERA individuals
using 10 cores of a 2.27 GHz Intel Xeon L5640 processor. We report mean switch error rate
(s.e.m.) on 197 children from European-ancestry trios in independent pedigrees.
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Supplementary Table 4. List of 10,000-SNP regions analyzed in Eagle and SHAPEIT2
N=150K analyses.

Chromosome Base pair range (hg19) Physical span Genetic span
1 157.1–204.1 Mb 47.0 Mb 51.5 cM
2 204.7–243.0 Mb 38.3 Mb 58.8 cM
4 53.2–106.8 Mb 53.7 Mb 49.1 cM
6 0.2–29.8 Mb 29.6 Mb 50.0 cM
7 72.0–127.1 Mb 55.1 Mb 48.1 cM
9 78.7–121.3 Mb 42.7 Mb 54.7 cM

11 69.6–117.2 Mb 47.6 Mb 49.3 cM
14 19.3–65.2 Mb 46.0 Mb 59.0 cM
16 58.3–90.2 Mb 31.9 Mb 55.2 cM
19 28.3–59.1 Mb 30.8 Mb 57.6 cM

We defined these ten regions by (i) listing all SNPs in order from chromosome 1–22, (ii) splitting
this list into 10 chunks, and (iii) selecting the 10,000-SNP region in the middle of each chunk
(shifting the region if necessary to avoid crossing chromosome boundaries or centromeres).
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Supplementary Table 5. Distributions of discrepancy counts in 10Mb segments phased
using Eagle and SHAPEIT2 on N=150K samples.

Percentage of 10Mb segments with specified number of discrepancies
Method 0 1 2 3 4 ≥5
Eagle --fast 61.2% (1.9%) 14.6% (0.7%) 3.6% (0.4%) 0.9% (0.2%) 0.6% (0.2%) 19.2% (1.5%)
Eagle 63.3% (1.9%) 15.6% (0.6%) 2.7% (0.4%) 0.8% (0.1%) 0.5% (0.1%) 17.1% (1.5%)
SHAPEIT2 K=100 (3 blocks) 56.9% (1.5%) 12.3% (0.7%) 1.9% (0.3%) 0.8% (0.2%) 0.9% (0.2%) 27.1% (1.2%)
SHAPEIT2 K=200 (4 blocks) 63.5% (1.6%) 12.4% (0.8%) 1.8% (0.3%) 1.0% (0.2%) 0.4% (0.1%) 20.8% (1.0%)
SHAPEIT2 K=400 (5 blocks) 64.9% (1.5%) 13.3% (0.8%) 2.2% (0.3%) 0.6% (0.1%) 0.5% (0.2%) 18.4% (1.0%)

(This table provides detailed discrepancy distributions for the analyses presented in Table 1.) We
benchmarked various parameter settings of Eagle and SHAPEIT2 in ten analyses of 10,000-SNP
regions (Supplementary Table 4), phasing all N=150K UK Biobank samples in each analysis. We
partitioned SHAPEIT2 analyses into 3, 4, or 5 blocks (with an overlap of 500 SNPs) as
necessitated by computational constraints; we ligated SHAPEIT2 output using hapfuse v1.6.2.
The number of discrepancies within a 10Mb segment is defined as the minimum number of SNPs
with incorrect phase when comparing a phased haplotype to either trio-phased haplotype [13].
Percentages of 10Mb segments with a given number of discrepancies are means (s.e.m.) over the
ten 10,000-SNP regions. Within each 10,000-SNP region, we computed the distribution of
discrepancies across the 70 European-ancestry trios on as many disjoint 10Mb segments as could
fit in the region while leaving a 1Mb buffer on each end. That is, for a 10,000-SNP region of
length L, we considered 70b(L− 2)/10c segments.
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Supplementary Table 6. Computational cost and accuracy of Eagle on N=150K samples
using additional parameter settings.

Method Run time Switch error rate Switch error rate
Eagle --fast 2.8 days 0.317% (0.012%) 0.152% (0.012%)
Eagle 5.0 days 0.272% (0.009%) 0.118% (0.007%)
Eagle 2x HMM beam width 6.2 days 0.285% (0.012%) 0.123% (0.009%)
Eagle w=0.2cM 7.3 days 0.276% (0.011%) 0.118% (0.008%)
Eagle w=0.2cM, 2x HMM beam width 9.2 days 0.266% (0.011%) 0.108% (0.008%)

(This table provides benchmark results analogous to Table 1 for a few additional parameter
settings of Eagle; the first two rows of the two tables are shared.) We benchmarked various
parameter settings of Eagle in ten analyses of 10,000-SNP regions (Supplementary Table 4),
phasing all N=150K UK Biobank samples in each analysis. Switch error rates are means (s.e.m.)
over the ten regions, assessed on 70 European-ancestry trios. Switch error rates without blips
ignore switches arising when 1–2 SNPs are oppositely phased relative to ≥10 consistently phased
SNPs on both sides. The parameter settings tested are as follows:

• Eagle --fast: larger limit on SNP block span (w=0.5cM); reduced approximate HMM
search (see Online Methods for details)

• Eagle: default w=0.3cM limit on SNP block span; default approximate HMM search

• Eagle 2x HMM beam width: default w=0.3cM; twice as many states in approximate HMM
beam search width

• Eagle w=0.2cM: w=0.2cM; default approximate HMM search

• Eagle w=0.2cM, 2x HMM beam width: w=0.2cM; twice as many states in approximate
HMM beam search width.
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Supplementary Table 7. Computational cost and accuracy of Eagle and SHAPEIT2 on
N=150K samples using various parameters.

Method Run time Switch error rate Switch error rate
without blips

Eagle --fast 1.4 days 0.342% (0.016%) 0.180% (0.013%)
Eagle 2.6 days 0.284% (0.015%) 0.130% (0.010%)
SHAPEIT2 W=2Mb, K=100 (3 blocks) 50.1 days 0.306% (0.022%) 0.167% (0.015%)
SHAPEIT2 W=2Mb, K=200 (4 blocks) 56.7 days 0.272% (0.025%) 0.133% (0.014%)
SHAPEIT2 W=2Mb, K=400 (5 blocks) 69.7 days 0.248% (0.018%) 0.111% (0.008%)
SHAPEIT2 W=4Mb, K=100 (3 blocks) 33.5 days 0.398% (0.051%) 0.244% (0.038%)
SHAPEIT2 W=4Mb, K=200 (4 blocks) 40.4 days 0.350% (0.036%) 0.200% (0.023%)
SHAPEIT2 W=4Mb, K=400 (5 blocks) 54.4 days 0.292% (0.019%) 0.151% (0.014%)

(This table is analogous to Table 1 and includes benchmark data for SHAPEIT2 run with a
window size of 4Mb on a pilot subset of five 10,000-SNP regions.) We benchmarked various
parameter settings of Eagle and SHAPEIT2 in five analyses of 10,000-SNP regions (every other
line of Supplementary Table 4, i.e., the regions from chromosomes 2, 6, 9, 14, and 19), phasing
all N=150K UK Biobank samples in each analysis. We partitioned SHAPEIT2 analyses into 3, 4,
or 5 blocks (with an overlap of 500 SNPs) as necessitated by computational constraints; we
ligated SHAPEIT2 output using hapfuse v1.6.2. Run times are totals across all ten regions (using
16 cores of a 2.60 GHz Intel Xeon E5-2650 v2 processor). Switch error rates are means (s.e.m.)
over the ten regions, assessed on 70 European-ancestry trios. Switch error rates without blips
ignore switches arising when 1–2 SNPs are oppositely phased relative to ≥10 consistently phased
SNPs on both sides.

26

Nature Genetics: doi:10.1038/ng.3571



Supplementary Table 8. Computational cost and accuracy of efficient methods for
chromosome-scale analyses of N=150K samples.

(a) Running time for phasing N=150K samples in batches
Chromosome Eagle 1x150K SHAPEIT2 10x15K HAPI-UR 10x15K
chr1p 2.7 days / 27.8 GB 8.8 days / 7.0 GB 5.6 days / 25.5 GB
chr10 3.3 days / 32.8 GB 10.4 days / 8.2 GB 6.7 days / 30.7 GB
chr20 1.8 days / 19.1 GB 5.2 days / 4.5 GB 3.5 days / 17.0 GB

(b) Switch error rate
Chromosome Eagle 1x150K SHAPEIT2 10x15K HAPI-UR 10x15K
chr1p 0.29% (0.03%) 0.82% (0.05%) 1.68% (0.07%)
chr10 0.30% (0.02%) 0.87% (0.04%) 1.67% (0.05%)
chr20 0.32% (0.03%) 1.02% (0.06%) 1.96% (0.06%)

We phased the short arm of chromosome 1 (26,695 SNPs), chromosome 10 (31,090 SNPs), and
chromosome 20 (16,367 SNPs) using up to 10 cores of a 2.27 GHz Intel Xeon L5640 processor.
We report mean switch error rate (s.e.m.) over 70 children from European-ancestry trios. For the
SHAPEIT2 and HAPI-UR benchmarks, we phased only one N=15K batch of the data (containing
all trio children and 10% of the remaining samples) and scaled running times up by 10. We note
that the HAPI-UR runs only used 3 cores, whereas Eagle and SHAPEIT2 performed
multithreaded computations on 10 cores; however, parallelizing HAPI-UR jobs to fully use all
cores would require >100GB memory, exceeding our computational resources.
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Supplementary Table 9. In-sample imputation accuracy of Eagle and SHAPEIT2.

(a) Mean in-sample imputation R2 in curated British samples (s.e.m.)
MAF bin Eagle 1x150K SHAPEIT2 1x150K SHAPEIT2 1x150K SHAPEIT2 3x50K SHAPEIT2 10x15K

K=200 K=100 K=100 K=100
0.1–0.2% 0.790 (0.032) 0.779 (0.038) 0.778 (0.038) 0.624 (0.039) 0.520 (0.044)
0.2–0.5% 0.857 (0.017) 0.862 (0.014) 0.817 (0.019) 0.704 (0.023) 0.606 (0.028)
0.5–1% 0.898 (0.007) 0.901 (0.006) 0.872 (0.007) 0.808 (0.009) 0.728 (0.012)
1–2% 0.917 (0.003) 0.921 (0.002) 0.897 (0.003) 0.849 (0.004) 0.784 (0.005)
2–5% 0.935 (0.001) 0.939 (0.001) 0.923 (0.001) 0.888 (0.002) 0.838 (0.003)
5–10% 0.955 (0.001) 0.959 (0.001) 0.949 (0.001) 0.926 (0.002) 0.891 (0.003)
10–50% 0.966 (0.001) 0.971 (0.001) 0.965 (0.001) 0.947 (0.001) 0.923 (0.002)

(b) Mean in-sample imputation R2 in all samples (s.e.m.)
MAF bin Eagle 1x150K SHAPEIT2 1x150K SHAPEIT2 1x150K SHAPEIT2 3x50K SHAPEIT2 10x15K

K=200 K=100 K=100 K=100
0.1–0.2% 0.694 (0.029) 0.697 (0.032) 0.681 (0.034) 0.583 (0.039) 0.482 (0.035)
0.2–0.5% 0.803 (0.017) 0.825 (0.015) 0.788 (0.019) 0.697 (0.023) 0.593 (0.027)
0.5–1% 0.855 (0.008) 0.863 (0.008) 0.834 (0.008) 0.767 (0.011) 0.700 (0.013)
1–2% 0.892 (0.003) 0.900 (0.002) 0.873 (0.003) 0.826 (0.004) 0.760 (0.005)
2–5% 0.914 (0.001) 0.922 (0.001) 0.905 (0.002) 0.869 (0.002) 0.819 (0.003)
5–10% 0.938 (0.002) 0.946 (0.001) 0.935 (0.002) 0.911 (0.002) 0.877 (0.003)
10–50% 0.952 (0.001) 0.960 (0.001) 0.953 (0.001) 0.935 (0.001) 0.910 (0.002)

(The first table provides numeric data plotted in Supplementary Fig. 2a.) We randomly masked
2% of the genotypes in all N=150K UK Biobank samples and phased the first 40cM of
chromosome 10 using Eagle (on the full cohort) and SHAPEIT2 (on all samples at once with
either K=100 (default) or 200 states as well as in N=50K and N=15K batches), imputing all
masked genotypes in the process. We then evaluated the accuracy of the imputed genotypes on (a)
the subset of British samples curated by UK Biobank for GWAS (≈80% of all samples) or (b) all
samples, stratifying by minor allele frequency in the selected samples.
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Supplementary Table 10. In-sample imputation accuracy of Eagle and SHAPEIT2 in
chromosome-scale analyses.

(a) Mean in-sample imputation R2 in curated British samples (s.e.m.)
MAF bin Eagle 1x150K SHAPEIT2 10x15K
0.1–0.2% 0.790 (0.007) 0.599 (0.009)
0.2–0.5% 0.864 (0.003) 0.704 (0.005)
0.5–1% 0.906 (0.001) 0.779 (0.003)
1–2% 0.923 (0.001) 0.823 (0.001)
2–5% 0.939 (0.000) 0.863 (0.001)
5–10% 0.959 (0.000) 0.908 (0.001)
10–50% 0.971 (0.000) 0.937 (0.000)

(b) Mean in-sample imputation R2 in all samples (s.e.m.)
MAF bin Eagle 1x150K SHAPEIT2 10x15K
0.1–0.2% 0.734 (0.006) 0.585 (0.007)
0.2–0.5% 0.822 (0.003) 0.679 (0.005)
0.5–1% 0.874 (0.002) 0.751 (0.003)
1–2% 0.900 (0.001) 0.800 (0.001)
2–5% 0.922 (0.000) 0.846 (0.001)
5–10% 0.944 (0.000) 0.894 (0.001)
10–50% 0.958 (0.000) 0.925 (0.000)

We randomly masked 2% of the genotypes in all N=150K UK Biobank samples and phased the
short arm of chromosome 1 (26,695 SNPs), chromosome 10 (31,090 SNPs), and chromosome 20
(16,367 SNPs) using Eagle (on the full cohort) and SHAPEIT2 (in 10 batches of N=15K
samples), imputing all masked genotypes in the process. We then evaluated the accuracy of the
imputed genotypes on (a) the subset of British samples curated by UK Biobank for GWAS (≈80%
of all samples) or (b) all samples, stratifying by minor allele frequency in the selected samples.
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Supplementary Table 11. In-sample imputation accuracy of Eagle and SHAPEIT2 stratified
by ethnicity.

(a) Mean in-sample imputation R2 (s.e.m.), Eagle 1x150K
MAF bin British Irish otherWhite Indian Caribbean
0.1–0.2% 0.771 (0.031) NA NA NA NA
0.2–0.5% 0.853 (0.015) NA NA NA NA
0.5–1% 0.896 (0.006) NA NA NA NA
1–2% 0.914 (0.002) 0.925 (0.008) 0.780 (0.011) NA NA
2–5% 0.932 (0.001) 0.936 (0.004) 0.808 (0.005) NA NA
5–10% 0.953 (0.001) 0.952 (0.003) 0.862 (0.005) 0.718 (0.011) 0.695 (0.014)
10–50% 0.965 (0.001) 0.965 (0.001) 0.893 (0.002) 0.743 (0.005) 0.690 (0.005)

(b) Mean in-sample imputation R2 (s.e.m.), SHAPEIT2 1x150K, K=200
MAF bin British Irish otherWhite Indian Caribbean
0.1–0.2% 0.762 (0.037) NA NA NA NA
0.2–0.5% 0.858 (0.013) NA NA NA NA
0.5–1% 0.895 (0.005) NA NA NA NA
1–2% 0.918 (0.002) 0.929 (0.008) 0.778 (0.011) NA NA
2–5% 0.936 (0.001) 0.933 (0.004) 0.810 (0.006) NA NA
5–10% 0.957 (0.001) 0.958 (0.003) 0.876 (0.005) 0.734 (0.012) 0.737 (0.013)
10–50% 0.970 (0.001) 0.969 (0.001) 0.907 (0.002) 0.784 (0.005) 0.774 (0.005)

(c) Mean in-sample imputation R2 (s.e.m.), SHAPEIT2 1x150K, K=100
MAF bin British Irish otherWhite Indian Caribbean
0.1–0.2% 0.753 (0.037) NA NA NA NA
0.2–0.5% 0.813 (0.017) NA NA NA NA
0.5–1% 0.866 (0.006) NA NA NA NA
1–2% 0.894 (0.003) 0.894 (0.010) 0.738 (0.012) NA NA
2–5% 0.921 (0.001) 0.915 (0.004) 0.778 (0.006) NA NA
5–10% 0.947 (0.001) 0.950 (0.003) 0.858 (0.005) 0.686 (0.012) 0.713 (0.014)
10–50% 0.964 (0.001) 0.962 (0.001) 0.895 (0.002) 0.760 (0.005) 0.744 (0.005)

(d) Mean in-sample imputation R2 (s.e.m.), SHAPEIT2 10x15K, K=100
MAF bin British Irish otherWhite Indian Caribbean
0.1–0.2% 0.502 (0.040) NA NA NA NA
0.2–0.5% 0.598 (0.027) NA NA NA NA
0.5–1% 0.724 (0.012) NA NA NA NA
1–2% 0.781 (0.005) 0.824 (0.012) 0.686 (0.013) NA NA
2–5% 0.835 (0.003) 0.831 (0.006) 0.731 (0.007) NA NA
5–10% 0.889 (0.003) 0.897 (0.005) 0.820 (0.006) 0.612 (0.013) 0.601 (0.016)
10–50% 0.921 (0.002) 0.922 (0.002) 0.868 (0.003) 0.710 (0.006) 0.627 (0.006)

(These tables provide numeric data plotted in Supplementary Fig. 2b along with data for
SHAPEIT2 using 10 batches of N=15K samples.) The caption is on the next page.
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Extended caption for Supplementary Table 11. We randomly masked 2% of the genotypes in all

N=150K UK Biobank samples and phased the first 40cM of chromosome 10 using Eagle (on the

full cohort) and SHAPEIT2 (on all samples at once with either K=100 (default) or 200 states as

well as in N=15K batches), imputing all masked genotypes in the process. We then evaluated the

accuracy of the imputed genotypes on subsets of the UK Biobank cohort defined by self-reported

ethnicity. The five largest ethnicities in the data set were British (137,178 samples), Irish (3,977),

“Any other white background” (4,760), Indian (1,324), and Caribbean (1,028). For the ethnicities

with <5,000 samples, we report results only for minor allele frequency bins corresponding to an

expected minor allele count ≥2 in 2% of the samples.
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Supplementary Table 12. HRC imputation accuracy after pre-phasing using SHAPEIT2 or
Eagle.

MAF bin SHAPEIT2 10x15K Eagle 1x150K Difference
0.1–0.2% 0.574 (0.012) 0.594 (0.012) 0.020 (0.002)
0.2–0.5% 0.665 (0.010) 0.679 (0.010) 0.013 (0.002)
0.5–1% 0.753 (0.009) 0.765 (0.009) 0.012 (0.001)
1–2% 0.786 (0.008) 0.798 (0.008) 0.012 (0.001)
2–5% 0.812 (0.007) 0.822 (0.007) 0.010 (0.001)

5–10% 0.881 (0.007) 0.888 (0.006) 0.007 (0.000)
10–50% 0.924 (0.004) 0.928 (0.004) 0.004 (0.000)

We pre-phased N=15K samples using SHAPEIT2 and pre-phased all N=150K samples using
Eagle; we then imputed the same subset of N=15K pre-phased samples using the Haplotype
Reference Consortium (r1) imputation panel. Each row reports mean imputation R2 (s.e.m.)
assessed in curated British samples over 300 masked SNPs, 100 each in chromosomes 1 (short
arm), 10, and 20.
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Supplementary Table 13. UK10K imputation accuracy after pre-phasing using SHAPEIT2
or Eagle.

MAF bin SHAPEIT2 10x15K Eagle 1x150K Difference
0.1–0.2% 0.457 (0.015) 0.468 (0.014) 0.010 (0.002)
0.2–0.5% 0.563 (0.013) 0.571 (0.013) 0.008 (0.001)
0.5–1% 0.673 (0.012) 0.680 (0.012) 0.007 (0.001)
1–2% 0.719 (0.010) 0.726 (0.010) 0.008 (0.001)
2–5% 0.754 (0.009) 0.760 (0.009) 0.006 (0.001)

5–10% 0.840 (0.008) 0.845 (0.008) 0.004 (0.000)
10–50% 0.892 (0.006) 0.894 (0.006) 0.002 (0.000)

We pre-phased N=15K samples using SHAPEIT2 and pre-phased all N=150K samples using
Eagle; we then imputed the same subset of N=15K pre-phased samples using the UK10K
imputation panel. Each row reports mean imputation R2 (s.e.m.) assessed in curated British
samples over 300 masked SNPs, 100 each in chromosomes 1 (short arm), 10, and 20.
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Supplementary Table 14. UK10K imputation accuracy on sequenced SNPs after
pre-phasing using SHAPEIT2 or Eagle.

MAF bin SHAPEIT2 10x15K Eagle 1x150K Difference
1–2% 0.797 (0.003) 0.802 (0.003) 0.004 (0.001)
2–5% 0.895 (0.002) 0.897 (0.002) 0.001 (0.000)

5–10% 0.943 (0.001) 0.943 (0.001) 0.000 (0.000)
10–50% 0.965 (0.001) 0.965 (0.001) 0.000 (0.000)

We pre-phased 89 GBR samples from the 1000 Genomes data set together with N=15K samples
using SHAPEIT2 or all N=150K samples using Eagle; we then imputed the pre-phased samples
using the UK10K imputation panel. Each row reports mean imputation R2 (s.e.m.) assessed in
curated British samples over all SNPs in the corresponding MAF range.
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Supplementary Table 15. Sensitivity of Eagle to increased genotyping error.

Added error Switch error rate Switch error rate without blips
0% 0.304% (0.020%) 0.137% (0.013%)

0.5% 0.858% (0.029%) 0.226% (0.024%)
1% 1.528% (0.038%) 0.432% (0.032%)
2% 2.974% (0.048%) 1.164% (0.040%)

We assessed Eagle’s robustness to genotyping error by adding random errors at 0.5%, 1% or 2%
of genotypes on chromosome 10. Specifically, with probability 0.5%, 1%, or 2%, we modified
each non-missing genotype by 1 (i.e., homozygous genotypes became hets and heterozygous
genotypes became homozygous for one or the other allele with uniform probability 1/2). We then
phased the modified data set using Eagle. Switch error rates are means (s.e.m.) over 70
European-ancestry trios. Switch error rates without blips ignore switches arising when 1–2 SNPs
are oppositely phased relative to ≥10 consistently phased SNPs on both sides.
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