
Nature GeNetics  VOLUME 47 | NUMBER 12 | DECEMBER 2015 1385

a n a ly s i s

Heritability analyses of genome-wide association study (GWAS)  
cohorts have yielded important insights into complex disease  
architecture, and increasing sample sizes hold the promise of 
further discoveries. Here we analyze the genetic architectures  
of schizophrenia in 49,806 samples from the PGC and nine 
complex diseases in 54,734 samples from the GERA cohort.  
For schizophrenia, we infer an overwhelmingly polygenic 
disease architecture in which ≥71% of 1-Mb genomic regions  
harbor ≥1 variant influencing schizophrenia risk. We also 
observe significant enrichment of heritability in GC-rich  
regions and in higher-frequency SNPs for both schizophrenia  
and GERA diseases. In bivariate analyses, we observe 
significant genetic correlations (ranging from 0.18 to 0.85)  
for several pairs of GERA diseases; genetic correlations were on 
average 1.3 tunes stronger than the correlations of overall  
disease liabilities. To accomplish these analyses, we developed  
a fast algorithm for multicomponent, multi-trait variance-
components analysis that overcomes prior computational  
barriers that made such analyses intractable at this scale. 

Over the past 5 years, variance-components analysis has had con-
siderable impact on research in human complex trait genetics,  
yielding rich insights into the heritable phenotypic variation explained 

by SNPs1–3, its distribution across chromosomes, allele frequencies 
and functional annotations4–6, and its correlation across traits7,8. 
These analyses have complemented GWAS: whereas GWAS have 
identified individual loci explaining significant portions of trait her-
itability, variance-components methods have aggregated signal across 
large SNP sets, finding information about polygenic effects invis-
ible to association studies. The usefulness of both approaches has 
been particularly clear in studies of schizophrenia, for which early 
GWAS achieved few genome-wide significant findings yet variance- 
components analysis indicated a large fraction of heritable variance 
spread across common SNPs in numerous loci, over 100 of which have 
now been discovered in large-scale GWAS5,9–12.

Despite these advances, much remains unknown about the genetic 
architecture of schizophrenia and other complex diseases. For schizo-
phrenia, known GWAS-identified loci collectively explain only 3% of 
variation in disease liability12; of the remaining variation, a sizable 
fraction has been shown to be hidden among thousands of common 
SNPs5,11, but the distribution of these SNPs across the genome and 
the allele frequency spectrum remain uncertain. Even for traits such 
as lipid levels and type 2 diabetes for which loci of somewhat larger 
effect have been identified, the spatial and allelic distribution of the 
variants responsible for the bulk of known SNP heritability remains a  
mystery13,14. Variance-components methods have potential to shed 
light on these questions using the increased statistical resolution 
offered by tens or hundreds of thousands of samples15,16. However, 
although study sizes have increased beyond 50,000 samples,  
existing variance-components methods2 are becoming computation-
ally intractable at such scales. Computational limitations have forced 
previous studies to split and then perform meta-analysis on data sets6, 
a procedure that results in loss of precision for variance-components 
analysis, which relies on pairwise relationships for inference (in con-
trast to meta-analysis in association studies)15,16.

Here we introduce a much faster variance-components method, 
BOLT-REML, and apply it to analyze ≈50,000 samples in each of 
two very large data sets—the Psychiatric Genomics Consortium 
(PGC2)12 and Genetic Epidemiology Research on Aging (GERA; see 
URLs)—obtaining several new insights into the genetic architectures 
of schizophrenia and nine other complex diseases. We harnessed  
the computational efficiency and versatility of BOLT-REML  
variance-components analysis to estimate components of heritability,  
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infer levels of polygenicity, partition SNP heritability across the com-
mon allele frequency spectrum and estimate genetic correlations among 
GERA diseases. We corroborated our results using an efficient imple-
mentation of PCGC regression17 when computationally feasible.

RESULTS
Overview of the methods
The BOLT-REML algorithm employs the conjugate gradient-based 
iterative framework for fast mixed-model computations18,19 that we 
previously harnessed for mixed-model association analysis using a 
single variance component20. In contrast to that work, BOLT-REML 
robustly estimates variance parameters for models involving multiple 
variance components and multiple traits21,22. BOLT-REML uses a 
Monte Carlo average information restricted maximum-likelihood (AI 
REML) algorithm23, which is an approximate Newton-type optimi-
zation of the restricted log likelihood24 with respect to the variance 
parameters being estimated. In each iteration, BOLT-REML rapidly 
approximates the gradient of the log likelihood using pseudorandom 
Monte Carlo sampling25 and approximates the Hessian of the log like-
lihood using the average information matrix26. Full details, includ-
ing simulations verifying the accuracy of BOLT-REML heritability 
parameter estimates and standard errors (which are nearly identical 
to those from standard REML), are provided in the Online Methods 
and the Supplementary Note. We have released open source software 
implementing BOLT-REML (see URLs).

Efficiency of BOLT-REML variance-components analysis
We assessed the computational performance of BOLT-REML,  
comparing it to GCTA software2 (see URLs) in REML analyses of 
GERA disease phenotypes on subsets of the GERA cohort. We observed  
that, across three types of analyses, BOLT-REML achieved order- 
of-magnitude reductions in running time and memory use in com-
parison to GCTA, with relative improvements increasing with sample  
size (Fig. 1). The running times we observed for BOLT-REML scaled 
roughly as ≈MN1.5 for M SNPs and N samples, consistent with previ-
ously reported empirical results for BOLT-LMM association analy-
sis20; in contrast, standard REML analysis required O(MN2 + N3) 
running time (Fig. 1a and Supplementary Table 1). BOLT-REML 
also only required ≈MN/4 bytes of memory (with the amount nearly 
independent of the number of variance components used), in con-
trast to standard REML analysis, which required O(N2) memory 
per variance component (Fig. 1b and Supplementary Table 1). 
Consequently, GCTA could only analyze at most half the cohort; 
indeed, computational constraints have forced previous studies  
to split large cohorts for analysis6, increasing standard errors.  

In contrast, BOLT-REML enabled us to perform a full suite of herit-
ability analyses on N = 50,000 samples with tight error bounds15,16.

SNP heritability of schizophrenia and GERA diseases
We analyzed 22,177 schizophrenia cases and 27,629 controls with 
well-imputed genotypes at 472,178 markers of minor allele fre-
quency (MAF) ≥2% in the PGC2 data12 (Supplementary Table 2) 
and nine complex diseases in 54,734 randomly ascertained samples 
typed at 597,736 SNPs in the GERA cohort (Online Methods; quality 
control included filtering to unrelated European-ancestry samples 
and pruning markers by linkage disequilibrium (LD) to r2 ≤0.9). To 
remove possible effects from population stratification, all analyses 
included ten principal-component covariates; PGC2 analyses fur-
ther included 29 study indicators. We estimated liability-scale SNP 
heritability ( hg

2 ; ref. 1) for schizophrenia in the PGC2 data set and 
all 22 disease phenotypes in the GERA data set assuming a liabil-
ity-threshold model; we assumed a schizophrenia population risk 
of 1% (refs. 5,11,12), and we assumed that GERA disease popula-
tion risks matched case fractions in the GERA cohort. For GERA 
diseases, we estimated hg

2  by applying BOLT-REML directly to 
observed case-control status—obtaining raw observed-scale her-
itability parameter hg-cc

2  estimates—and then converting hg-cc
2  

to liability-scale hg
2  using the linear transformation from ref. 3 

(Table 1 and Supplementary Table 3). Given the very low values  
of hg-cc

2  for many GERA diseases, we restricted further GERA 
analyses to the nine individual diseases with the highest hg-cc

2  
values (Table 1). For schizophrenia, we estimated hg

2  by devel-
oping and applying a computationally efficient implementa-
tion of PCGC regression17 (see URLs and Online Methods) in 
light of the known downward bias of large-sample REML hg

2   
estimates for ascertained case-control traits17,27. Indeed, upon per-
forming REML analyses on full data sets as well as on random 2–10× 
subsamples, we observed significant downward bias of schizophrenia 
hg

2  estimates with increasing sample size, whereas we observed no 
such trend in GERA, which is a randomly ascertained cohort study 
(Supplementary Table 4). REML hg

2  estimates on PGC2 data down-
sampled by 10× (N ≈ 5,000) were consistent with the PCGC regression 
estimate (Supplementary Table 4).

These analyses help explain a previously mysterious observation of 
decreasing hg

2  estimates for schizophrenia with increasing aggregation 
of cohorts5. This phenomenon was attributed to phenotypic hetero-
geneity5,11, as suggested by estimates of between-cohort genetic cor-
relation of <1 (ref. 5). Our analyses implicate ascertainment-induced 
downward bias of estimated hg

2  (worsening with increasing sam-
ple size) as an additional explanation of this effect (Supplementary 
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Figure 1 Computational performance of the BOLT-REML and GCTA 
heritability analysis algorithms. Benchmarks of the BOLT-REML and GCTA 
algorithms are shown for three heritability analysis scenarios, including 
analysis with heritability partitioned across 22 chromosomes, analysis 
with heritability partitioned across six MAF bins and bivariate analysis.  
(a,b) Run times (a) and memory (b) are plotted for runs on subsets of 
the GERA cohort with a fixed SNP count of M = 597,736 and increasing 
sample size (N), using dyslipidemia as the phenotype in the univariate 
analyses and hypertension as the second phenotype in the bivariate 
analyses. Reported run times are the medians for five identical runs using 
one core of a 2.27-GHz Intel Xeon L5640 processor. Reported run times 
for GCTA are the total time required to compute the genetic relationship 
matrix (GRM) and perform REML analysis; time breakdowns and numeric 
data are provided in supplementary Table 1. Data points not plotted for 
GCTA represent scenarios in which GCTA required more memory than the 
96 GB available. Software versions: BOLT-REML, v2.1; GCTA, v1.24.
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Tables 4 and 5). In theory, the extent of ascertainment-induced bias 
could be used to infer the extent of case overascertainment and hence 
infer population risk, but we found in simulations that larger sample 
sizes would be required (Supplementary Table 6). Finally, we note 
that, although our reported schizophrenia hg

2  estimate assumes a 
population risk of 1% (refs. 5,11,12), this assumption does not affect 
estimates of the relative partitioning of SNP heritability across SNP 
subsets; in the partitioning analyses that follow, hg

2  serves only as 
a scale factor (Online Methods). Similarly, although our use of an 
LD-pruned marker set to alleviate LD bias28–30 (Online Methods) 
results in a higher hg

2  estimate than when using unpruned markers 
(Supplementary Table 5), this choice does not otherwise affect the 
analyses that follow.

Contrasting polygenicity of schizophrenia and GERA diseases
We next performed a detailed investigation of the polygenicity of 
schizophrenia and the GERA diseases. Specifically, we estimated 
the SNP heritability explained by each 1-Mb region of the genome,  
hg 1 Mb,

2  (defined in the Online Methods) (Fig. 2a); we confirmed in 
simulations that 1-Mb regions are sufficiently wide to ensure negli-
gible leakage of heritability across region boundaries due to LD or 
incomplete tagging of variants (Supplementary Tables 7 and 8). We 
restricted our primary analyses of GERA diseases to dyslipidemia and 
hypertension, the diseases with the highest observed-scale SNP herit-
ability, hg-cc

2  (Supplementary Table 3); we had insufficient statistical 
power to analyze diseases with lower hg-cc

2  (Supplementary Fig. 1). 
As expected, SNP heritability estimates for individual 1-Mb regions 
were individually noisy (mean estimated hg 1 Mb,

2  /mean SE ( hg 1 Mb,
2 ) =  

0.85 for schizophrenia and 0.51 for dyslipidemia and hypertension, 
where SE is the standard error), although we did see substantial SNP 
heritability in some 1-Mb regions (particularly for dyslipidemia, 
which has SNPs of relatively large effect13; in contrast, no 1-Mb region 
was estimated to explain more than 0.1% of schizophrenia liability).  
We therefore sought to draw inferences from the bulk distribution 
of per-megabase SNP heritability estimates (Supplementary Fig. 2). 
We note that a limitation of BOLT-REML is that it does not compute 
likelihood-ratio test statistics for testing whether individual variance 
components contribute nonzero variance (Supplementary Note).

To understand the effect of different levels of polygenicity on the 
distribution of per-megabase SNP heritability estimates, we simulated 
quantitative traits of varying polygenicity (2,000–597,736 causal SNPs) 
with hg

2  matching the genome-wide observed-scale hg-cc
2  estimates 

for schizophrenia, dyslipidemia and hypertension (Supplementary 

Table 3) using PGC2 and GERA genotypes. We then applied the same 
procedures we used for the real phenotypes to obtain per-megabase 
SNP heritability estimates, and we compared the simulated distri-
butions of per-megabase heritability to the observed distributions, 
focusing on the fraction of 1-Mb regions with hg 1 Mb,

2  estimates of 
zero (Fig. 2b). Intuitively, traits that are more polygenic have herit-
ability spread more uniformly across 1-Mb regions and hence have 
fewer hg 1 Mb,

2  estimates of zero, as our simulations confirmed. On 
the basis of this statistic, our analyses suggest that schizophrenia has 
a genetic architecture involving >20,000 causal SNPs; however, we 
caution that, unlike our analyses below, this estimate is contingent 
on our parameterization of simulated genetic architectures, as are 
previous estimates11,31.

We further interrogated our real and simulated distributions of per-
megabase SNP heritability estimates to obtain nonparametric bounds 
on the cumulative fraction of hg

2  explained by various numbers  
of top 1-Mb regions, that is, the regions that harbor the most SNP 
heritability in the population, for schizophrenia, dyslipidemia and 
hypertension (Fig. 2c). We observed that the probability of observ-
ing an hg 1 Mb,

2  estimate of zero for a given 1-Mb region is a convex  
function of the true SNP heritability of that region (Supplementary 
Figs. 3 and 4), and we harnessed this observation to create an upper 
bound for the cumulative heritability explained by true top regions 
(Online Methods). To create a lower bound for this quantity, we applied 
a cross-validation procedure (similar to the one in ref. 32) in which we 
selected top regions using subsets of the data and estimated the herit-
ability explained by these regions using left-out test samples (Online 
Methods). Combining the upper and lower bounds produced conserva-
tive 95% confidence intervals for the heritability explained by the top 
regions (Fig. 2c), as we verified in simulations (Supplementary Fig. 5). 
In particular, we inferred that schizophrenia has an extremely polygenic 
architecture, with most 1-Mb regions (conservative 95% confidence 
interval (CI) = 71–100%) contributing nonzero SNP heritability and 
very little concentration of SNP heritability in the top 1-Mb regions, 
in contrast to dyslipidemia (Fig. 2c). Notably, these bounds are not 
contingent on any particular parametric model of genetic architecture 
(Supplementary Fig. 6): this inference uses simulation data only to 
interrogate the sampling variance in hg 1 Mb,

2  estimates, which is largely 
independent of the distribution of heritability across the SNPs in a 
region (Supplementary Fig. 4)28. (We report only conservative 95% 
confidence intervals, without parameter estimates, because obtaining 
point estimates would require assuming a parameterization of genetic 
architecture.) We repeated all of these analyses using 0.5-Mb regions 
and observed no qualitative differences in the results (Supplementary 
Figs. 2, 3 and 7, and Supplementary Table 7).

Having computed per-megabase SNP heritability estimates, we 
checked for correlations between estimated hg 1 Mb,

2  and genomic 
annotations that vary slowly across the genome. Specifically, we tabu-
lated the GC content, genic content6, replication timing33, recombi-
nation rate34, background selection35 and methylation quantitative 
trait loci (meQTLs)36 per megabase of the genome. Each of these 
annotations had autocorrelation of r2 >0.3 across consecutive 1-Mb 
segments (Supplementary Table 9). For each disease (schizophrenia, 
dyslipidemia and hypertension), we observed the greatest correlation 
with GC content (P < 1 × 10−5) (Supplementary Table 10). We also 
observed significant correlations of per-megabase SNP heritability 
with genic content, replication timing and recombination rate; how-
ever, upon including GC content—which is correlated with each of 
the other annotations (Supplementary Table 11)—as a covariate, all 
other correlations became non-significant (Supplementary Table 10).  
To further investigate this finding, we stratified 1-Mb regions into 

Table 1 Estimated proportions of variance in disease liability 
explained by snPs
Disease Cases Controls hg

2  (SE)

Schizophrenia 22,177 27,629 0.274 (0.007)

Allergic rhinitis 13,437 41,297 0.074 (0.015)

Asthma 8,929 45,805 0.152 (0.018)

Cardiovascular disease 14,861 39,873 0.092 (0.015)

Diabetes type 2 6,845 47,889 0.297 (0.022)

Dyslipidemia 29,511 25,223 0.263 (0.014)

Hypertension 27,921 26,813 0.255 (0.014)

Macular degeneration 3,700 51,034 0.242 (0.029)

Osteoarthritis 19,832 34,902 0.098 (0.014)

Osteoporosis 5,337 49,397 0.195 (0.024)

Schizophrenia cases and controls are from the PGC2 data set12; the hg
2 estimate 

assumes a population risk of 1% and was computed using PCGC regression to avoid 
REML bias induced by overascertainment of cases17,27. Cases and controls for the 
other nine diseases are from the GERA data set; hg

2 estimates assume random sample 
ascertainment and were computed using BOLT-REML.
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quintiles on the basis of GC content and par-
titioned SNP heritability across the strata, 
observing a clear enrichment of heritability 
with increasing GC content (Fig. 3), which 
we verified was not due to systematic dif-
ferences in SNP count or MAF distribution 
across the GC quintiles (Supplementary Fig. 8 and Supplementary 
Table 12) and was not explained by differences in meQTL counts 
(Supplementary Fig. 9). To quantify this enrichment, we performed 
finer partitioning of 1-Mb regions into 50 GC strata and regressed 
SNP heritability estimates against GC content (Online Methods).  
We found that a 1% increase in GC content (relative to the median) 
corresponded to a 1.0%, 4.4% and 3.2% increase in heritability 
explained (relative to the mean) for schizophrenia, dyslipidemia  
and hypertension, respectively (95% CI = 0.3–1.6%, 2.1–6.7%  
and 1.8–4.6%). Again, repeating these analyses using 0.5-Mb regions 
produced no qualitative differences in the results (Supplementary 
Fig. 10 and Supplementary Tables 10 and 11). We also observed  
that including ten principal-component covariates per variance com-
ponent or applying extremely stringent quality control had a neg-
ligible impact on our results (Supplementary Table 13). Likewise, 
repeating our analyses using PCGC regression instead of BOLT-
REML produced consistent results with slightly larger standard  
errors (Supplementary Table 13).

Finally, we performed chromosome partitioning of SNP herit-
ability for each disease, as previously done for schizophrenia using 
N = 21,258 samples5. We confirmed a strikingly linear relationship 
between the per-chromosome SNP heritability of schizophrenia and 
chromosome length (Supplementary Fig. 11), consistent with a 
highly polygenic disease architecture. In contrast, the trend for dys-
lipidemia was noticeably less linear, consistent with the existence of 
large-effect loci (Supplementary Fig. 11).

Enrichment of SNP heritability in higher-frequency SNPs
Given the high observed-scale heritability of schizophrenia in the 
full data set with N = 49,806 samples (Supplementary Table 3), we 
reasoned that analyses partitioning SNP heritability for schizophrenia 
by allele frequency would yield tight partitioning estimates, providing 
greater resolution than previous inferences using N = 21,258 samples5. 
To calibrate this analysis (accounting for incomplete LD between 
tagging SNPs and true causal SNPs), we first ran MAF-partitioned  
heritability analyses of simulated quantitative phenotypes based on 
UK10K sequencing data (see the Online Methods and URLs). We sim-
ulated genetic architectures in which causal SNPs were drawn from 
SNPs with MAF p ≥0.1% and were randomly assigned allele effect 
sizes with variances proportional to (p(1 − p))α for various values of α 
between −1 and 0 (refs. 28,29) (Online Methods). Under this param-
eterization, α = −1 corresponds to a model in which rare SNPs have 
larger per-allele effects, such that all SNPs have the same expected  
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contribution to variance1, whereas α = 0 corresponds to a model with no  
selection37 in which all alleles have similar per-allele effects, where rarer 
SNPs contribute less variance. We performed MAF-partitioned analy-
ses29 over six MAF bins (partitioning the 2–50% MAF range) using  
tagging SNPs from the PGC2 data set, and we observed that the  
heritability captured by tagging SNPs in each bin ( hg MAF,

2 ; defined 
in the Online Methods) accounted for most but not all of the true 
heritability contributed by causal UK10K variants in each bin (hMAF

2 ;  
defined in the Online Methods) (Fig. 4a).

We then performed MAF partitioning of schizophrenia hg
2  

by running BOLT-REML on the full PGC2 data set with variance  
components corresponding to the same six MAF bins (Fig. 4b). We 
estimated the total narrow-sense heritability contributed per MAF 
bin, hMAF

2  (Fig. 4b), by performing an inverse variance–weighted 
least-squares fit of observed hg MAF,

2  against data from our simula-
tions, interpolated for −1 ≤ α ≤ 0; this procedure yielded a best-fit 
value of α = −0.28 (jackknife SE = 0.09) (Supplementary Fig. 12), 
from which we inferred hMAF

2 . To keep our inferences robust to model 
parameterization, we computed conservative 95% confidence inter-
vals for hMAF

2  (independent of the best-fit α) by taking the union of 
the 95% confidence intervals assuming different values of α (−1 ≤ α 
≤ 0). Finally, we divided hMAF

2  by the number of UK10K SNPs per 
bin (Supplementary Table 14) to estimate the average heritability 
explained per SNP in each MAF bin, sMAF

2  (Fig. 4c), observing a 

clear increase in per-SNP heritability with increasing allele frequency. 
Repeating the MAF partitioning using PCGC regression produced 
consistent results with slightly larger standard errors (Supplementary 
Table 13). We observed the same general trend in analyses of GERA 
diseases, although the results were noisier because of smaller hg-cc

2  
(Supplementary Fig. 13).

Genetic correlations across GERA diseases
Because GERA samples were phenotyped for multiple diseases, we 
also estimated genetic correlations and total correlations (rg and 
rl; defined in the Online Methods) among GERA disease liabilities  
(Fig. 5 and Supplementary Table 15). We estimated genetic cor-
relations using bivariate BOLT-REML on each pair of case-control  
traits7 and total liability-scale correlations using Monte Carlo  
simulations to match total observed-scale correlations (Online 
Methods). We first ran the analysis using only our standard set of 
covariates (age, sex, ten principal components and Affymetrix kit 
type) (Fig. 5a) and then reran the analysis including body mass  
index (BMI) as an additional covariate (Fig. 5b). We verified that, 
of the nine survey-derived covariates provided with the GERA data 
set, BMI was the only one relevant to our analysis (Supplementary 
Fig. 14). Interestingly, we observed that adjusting for BMI produced 
(on average) a 25% (SE = 5%) relative reduction in genetic correla-
tions and a 19% (SE = 3%) relative reduction in total correlations, 
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Figure 4 Inferred heritability of schizophrenia liability due to SNPs of various allele frequencies. (a) Simulated narrow-sense heritability per MAF  
bin ( hMAF

2 ; dashed blue curves) and estimated SNP heritability per MAF bin (hg,MAF
2 ; solid red curves) for quantitative phenotypes with genetic 

architectures in which SNPs of MAF p have average per-allele effect size variance proportional to p(1 – p)α. Simulations used causal SNPs with  
MAF ≥0.1% in UK10K sequencing data and tagging SNPs from our PGC2 analyses; error bars, 95% confidence intervals based on 4,000 runs.  
(b) SNP heritability (red) and inferred narrow-sense heritability (blue) of schizophrenia liability partitioned across six MAF bins. Point estimates of 
narrow-sense heritability per bin are based on interpolated values of the h hg,MAF

2
MAF/ 2  ratio at α = −0.28, which provided the best weighted least-

squares fit between observed hg,MAF
2  and interpolated hg,MAF

2  for the simulations in a (supplementary Fig. 12). (c) Inferred narrow-sense heritability  
of schizophrenia liability explained per SNP in each MAF bin, that is, hMAF

2  in b normalized by UK10K SNP counts (supplementary Table 14). 
Schizophrenia hg,MAF

2  error bars, 95% confidence intervals based on REML analytic standard errors. Schizophrenia hMAF
2  and sMAF

2  error bars,  
unions of 95% confidence intervals assuming −1 ≤ α ≤ 0.
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Figure 5 Genetic correlations and total 
correlations of GERA disease liabilities.  
(a) Correlations from bivariate analyses  
using only age, sex, ten principal components 
and Affymetrix kit type as covariates.  
(b) Correlations from bivariate analyses 
including BMI as an additional covariate. 
Genetic correlations are shown above the 
diagonals, and total liability correlations are 
shown below the diagonals. Asterisks indicate 
genetic correlations that are significantly 
positive (z > 3), accounting for 36 trait pairs 
tested. Numeric data, including standard errors, 
are provided in supplementary Table 15.
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as assessed by regressing BMI-adjusted correlations on unadjusted 
correlations, suggesting that some correlation signal among these 
diseases is mediated by BMI. Of the 13 significant genetic correla-
tions in the unadjusted analysis, six became non-significant upon 
adjusting for BMI, leaving a very strong genetic correlation between 
asthma and allergic rhinitis (rg = 0.85, SE = 0.11) and a cluster of six 
moderately strong genetic correlations among cardiovascular dis-
ease, type 2 diabetes, dyslipidemia and hypertension (rg = 0.27–0.43) 
(Supplementary Table 15).

We further investigated the relationship between genetic  
correlations (rg) and total correlations (rl) among disease liabilities. 
We observed that rg significantly exceeded rl for asthma and allergic 
rhinitis (rg = 0.85 versus rl = 0.46; P = 0.008 when adjusting for 36 
hypotheses); no other pair of diseases reached significance. We also 
observed an approximately linear relationship between genetic cor-
relation and total liability correlation; regressing rg on rl yielded a 
proportionality constant of rg/rl = 1.3 (SE = 0.1; with the caveat that 
the 36 trait pairs are not independent), robust to the choice of whether 
to use BMI as a covariate (Supplementary Fig. 15).

DISCUSSION
We have introduced a new fast algorithm, BOLT-REML, for variance-
components analysis involving multiple variance components and 
multiple traits, and we demonstrated that it enables previously intrac-
table large-sample heritability analyses. Such analyses will be essential 
to attaining the statistical resolution necessary to gain deeper insights 
into the genetic architecture of complex traits (Supplementary  
Table 16)15,16. We have applied BOLT-REML to perform ≈50,000-
sample analyses of the PGC2 and GERA data sets, uncovering  
multiple insights into complex disease architecture, including the 
extreme polygenicity of schizophrenia, enrichment of SNP heritabil-
ity in GC-rich regions and in higher-frequency SNPs, and significant 
genetic correlations among several GERA diseases.

Our per-megabase analyses of SNP heritability in schizophrenia, 
dyslipidemia and hypertension found contrasting levels of polygenicity, 
with schizophrenia exhibiting an exceptionally polygenic architecture. 
Our inference that most 1-Mb regions of the genome (71–100%) con-
tain schizophrenia-associated loci evokes the concern that increas-
ingly powered complex trait GWAS will ultimately implicate the 
entire genome, becoming uninformative38. Recent very large-scale 
GWAS12,32,39 have begun grappling with this problem by focusing on 
biological pathways or gene sets instead of individual SNPs40. Although 
previous studies have provided evidence for a highly polygenic archi-
tecture for schizophrenia9,41, no previous study has quantified polygen-
icity at the extreme level we have observed here; in light of this result, 
methods that further interrogate associations at the pathway level will 
be essential to extracting further biological insights about schizophre-
nia42. This finding also raises the question of whether polygenicity 
would diminish in analyses with more homogeneous sample recruit-
ment or phenotype (for example, treatment-resistant schizophrenia); 
future studies may be sufficiently powered to answer this question.  
As to our observation of enrichment of SNP heritability with increasing 
GC content, further study will be required to disentangle the mecha-
nisms underlying this phenomenon; previous work has shown that 
GC architecture has complex effects on recombination and replication 
timing33 as well as DNA methylation43.

Our results partitioning the SNP heritability of schizophrenia and 
GERA diseases across the 2–50% allele frequency spectrum shed light 
on the extent to which rarer SNPs tend to have larger per-allele effects, 
as predicted by evolutionary models44,45. Our analysis of schizophrenia,  
based on well-imputed SNPs with MAF ≥2%, does not assess the 

contribution of rare variants (MAF <1%) because of the need for strin-
gent quality control in heritability analyses of ascertained case-control 
cohorts3; however, the trend for SNPs with MAFs of 2–50% (Fig. 4b,c) 
strongly suggests that rarer SNPs have larger effect sizes per allele 
yet explain less variance per SNP. Although further study of more 
phenotypes and rarer variants is needed, this observation implies that 
the implicit assumption of α = −1 made by standard analyses of herit-
ability1 and mixed-model association20,27 may be suboptimal, leaving 
room for further improvement on both fronts.

Our correlation analyses of GERA diseases identified a very strong 
genetic correlation (rg = 0.85, SE = 0.11) between asthma and aller-
gic rhinitis. Although the link between asthma and allergy has long 
been known and recent GWAS have identified many shared associa-
tions, the extent to which these two diseases are genetically related 
has not previously been quantified46–48. Among other disease pairs, 
our observation of significant genetic correlations among metabolic 
diseases confirms and adds resolution to previous estimates49,50, and 
our observation of significant broad decreases in genetic and total 
correlations upon including BMI as a covariate highlights the impor-
tance of carefully considering the effects of heritable covariates when 
conducting and interpreting genetic analyses51. Additionally, our 
empirical observation of an approximately linear relationship between 
correlations of total liability and genetic correlations52, viewed in con-
junction with a similar (but noisier) empirical observation among a 
set of seven quantitative metabolic traits50, suggests the generality of 
such a trend for human complex traits.

Methodologically, although the variance-components (REML) 
approach1 that we have applied and accelerated here enjoys widespread 
use, three alternative approaches to heritability analysis (with various 
tradeoffs) have recently been proposed. First, the Bayesian sparse  
linear mixed model53 adapts the variance-components approach to 
better model traits with large-effect loci, slightly reducing standard 
errors at the expense of much larger computational cost; integrat-
ing this approach into BOLT-REML is a potential future direction. 
Second, PCGC regression17, which generalizes Haseman-Elston 
regression54, is not subject to downward bias under case-control 
ascertainment; we therefore recommend PCGC regression for the 
purpose of estimating genome-wide hg

2  in such situations. (For par-
titioning SNP heritability across subsets of SNPs, PCGC estimates 
have slightly higher standard errors than REML.) Third, LD Score 
regression49,55 is a very different approach that makes inferences 
using only GWAS summary statistics—not genotype data. LD Score 
regression has the disadvantage of somewhat higher standard errors 
(in comparison to REML) that further increase if inference is desired 
for small regions of the genome; as such, we are not currently aware 
of a method for assessing the degree of polygenicity using summary 
statistics. All of these methods have the limitation that they assume 
independence of genetic and environmental effects; violation of this 
assumption may cause bias.

In comparison to existing REML methods, the BOLT-REML  
algorithm we have proposed is more computationally efficient; 
however, our approach does have limitations. First, because BOLT-
REML achieves its increased speed by avoiding direct computation 
of likelihoods, it is unable to compute likelihood-ratio tests to assess 
whether variance parameters are significantly nonzero. In fact, the 
assumptions underlying REML analytic standard errors break down 
for parameter estimates of zero (and, more generally, at the parameter 
space boundary; Supplementary Note). GCTA2 provides an uncon-
strained optimization feature that allows negative variance estimates, 
thereby sidestepping this issue and also reducing constraint-induced 
bias; incorporating such a feature into BOLT-REML is a potential 
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future direction. Second, BOLT-REML, like all REML algorithms, 
occasionally fails to converge when variance parameters are poorly 
constrained, typically for multicomponent models at small sample 
sizes (N <5,000). Given that sample sizes are steadily increasing, how-
ever, we expect BOLT-REML to be a robust choice for harnessing the 
full power of large-scale cohorts to further elucidate complex trait 
architectures.

URLs. BOLT-REML software and source code (implemented in the 
BOLT-LMM v2.1 package), http://www.hsph.harvard.edu/alkes-price/ 
software/; GCTA software, http://www.complextraitgenomics.com/
software/gcta/; PCGC regression efficient software, http://github.
com/gauravbhatia1/PCGCRegression/; PLINK2 software, http://
www.cog-genomics.org/plink2; KING software, http://people.
virginia.edu/~wc9c/KING/; EIGENSOFT v6.0.1, including open 
source implementation of FastPCA, http://www.hsph.harvard.
edu/alkes-price/software/; GERA data set (database of Genotypes 
and Phenotypes (dbGaP), phs000674.v1.p1), http://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1; 
UK10K Project, http://www.uk10k.org/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
BOLT-REML algorithm. The overall framework of the BOLT-REML algo-
rithm is Monte Carlo AI REML23, a Newton-type iterative optimization of 
the (restricted) log likelihood with respect to the variance parameters sought. 
BOLT-REML begins a multi–variance component analysis by computing an 
initial estimate of each parameter using the single–variance component esti-
mation procedure of BOLT-LMM20 (which is the only analysis possible with 
BOLT-LMM). Then, in each iteration, BOLT-REML rapidly approximates the 
gradient of the log likelihood using pseudorandom Monte Carlo sampling25 
and the Hessian of the log likelihood using the average information matrix26. 
BOLT-REML efficiently computes both approximations using conjugate 
gradient iteration18,19 with the performance optimizations applied by BOLT-
LMM20. The approximate gradient and Hessian produce a local quadratic 
model of the likelihood surface, which we optimize within an adaptive trust 
region radius—key to achieving robust convergence—to obtain a proposed 
step. To evaluate the success of the proposed step (that is, to determine whether 
to accept the step, whether to change the trust region radius and whether 
the optimization has converged), we introduce a gradient-based approxima-
tion to the change in log likelihood achieved by the step. These procedures 
allow BOLT-REML to consistently achieve convergence in ≈O(MN1.5) time; 
in contrast, existing multicomponent REML algorithms either are less robust 
or require O(MN2 + N3) time (for example, GCTA2). Details are described in 
the Supplementary Note.

Accuracy of BOLT-REML variance-components analysis. We verified the 
accuracy of BOLT-REML analysis by simulating quantitative traits with infini-
tesimal architectures using genotypes from subsets of the GERA data set and 
partitioning heritability by chromosome. On a first set of 50,000 simulations 
using genotypes from N = 2,000 samples on chromosomes 21 and 22, BOLT-
REML correctly estimated components of heritability, computing nearly iden-
tical results to GCTA2 when run with 100 Monte Carlo trials and incurring 
only 1.03 times higher standard errors when run with 15 Monte Carlo trials 
(Supplementary Table 17), consistent with theory (Supplementary Note). On 
additional sets of 100 simulations using genotypes from N = 10,000 samples 
on chromosomes 1 and 2, BOLT-REML correctly estimated genetic correla-
tions in bivariate analyses of simulated quantitative traits7 (Supplementary  
Table 18) and randomly ascertained case-control traits using a liability- 
threshold model3 (Supplementary Table 19). Finally, in simulated N = 50,000 
case-control cohorts overascertained for cases (including population stratifica-
tion and varying polygenicity), we observed that, whereas absolute estimates 
of heritability were biased downward, as previously demonstrated17,27, the 
relative contributions of variance components and their standard errors were 
still accurately estimated when partitioning heritability by chromosome or 
MAF (Supplementary Figs. 16–19).

PGC2 data set. We analyzed the PGC2 schizophrenia data set12, applying the 
following filters. Of 39 European-ancestry cohorts available to us for analysis, 
we first eliminated the ten cohorts (containing 12% of the available samples) 
with the lowest numbers of well-imputed SNPs. We further filtered out samples 
with <90% European ancestry as determined by SNPweights v2.0 (ref. 56). 
Finally, we extracted an unrelated subset of individuals (pairwise genetic simi-
larity <0.0884) using KING v1.4–unrelated–degree 3; see URLs (refs. 57,58), 
comprising 22,177 cases and 27,629 controls (Supplementary Table 2). Of 
the imputed genotypes previously computed for each cohort, we restricted 
to well-imputed autosomal markers (genotype call confidence P > 0.8 with 
<2% missing rate in the cohort), given that stringent quality control is critical 
to avoid inflated estimates of components of heritability in ascertained case-
control data3. We then merged the 29 cohorts, taking the union of remaining 
markers across cohorts and then restricting to markers with total missing rate 
<5%, leaving 4.4 million markers. We further imposed a >2% MAF threshold 
based on the imputation quality of typical arrays at low MAF59, yielding 3.9 
million markers in substantial LD, to which we applied two rounds of LD 
pruning at r2 = 0.9 (PLINK2 (ref. 60); --indep-pairwise 50 5 0.9; see URLs), 
reducing the number of markers to 596,583 and finally 472,178. Our primary 
motivation for pruning was to reduce susceptibility of REML hg

2  estimation 
to LD bias28–30; additionally, pruning reduced computational costs.

GERA data set. We analyzed GERA samples (see URLs; dbGaP study accession 
phs000674.v1.p1) typed on the GERA EUR chip59 with phenotypes available 
for each of 22 disease conditions based on electronic medical records. (Our 
primary analyses did not include survey-derived phenotypes such as BMI, as 
the data use conditions stipulated that these phenotypes could only be used as 
covariates.) We applied similar filters as above, eliminating samples with <90% 
European ancestry and samples with missing sex and extracting an unrelated 
subset of 54,734 individuals using PLINK2 (--rel-cutoff 0.05). We removed 
SNPs deviating from Hardy-Weinberg equilibrium (P < 1 × 10−6) and SNPs 
with missing rate >2%, leaving 597,736 autosomal SNPs.

UK10K data set. Our simulations used UK10K genotypes from sequencing 
data (see URLs); we merged the ALSPAC and TwinsUK cohorts, intersected 
marker sets and eliminated multiallelic variants (leaving 18 million variants) 
and extracted 3,567 unrelated individuals using PLINK2.

Definitions of heritability parameters. We define hg
2  as the proportion of 

population variance in disease liability (assuming a liability threshold model61) 
explained by the best linear predictor using typed variants6. We call this quan-
tity ‘SNP heritability’ (ref. 1) (although the set of well-imputed variants in our 
PGC2 data set included a small fraction of biallelic indels). We define hg,MAF

2  as 
the proportion of population variance in disease liability explained by the sub-
set of variants in a particular MAF range within the same best linear predictor 
(jointly fit using all typed variants) and define hg,1 Mb

2  and hg,chr
2  analogously6.  

We define h2 as the total narrow-sense heritability—that is, the proportion of  
population variance explained by the best linear predictor using all variants 
(including untyped variants)—and we define hMAF

2  as the proportion of popula-
tion variance explained by all variants in the MAF range (within a predictor using 
all variants). Finally, we note that we abuse notation slightly by using the above 
symbols to refer to both true population parameter values and estimates thereof.

Estimating the SNP heritability of disease liabilities. We estimated hg
2   

for each GERA disease by running BOLT-REML on all samples and all mark-
ers in our filtered data set. In all our GERA analyses, we adjusted for age, sex, 
Affymetrix kit type and ten principal-component covariates by residualizing 
genotypes and phenotypes accordingly. We included principal-component 
covariates (computed using FastPCA62; see URLs) to eliminate phenotypic 
variance explained by ancestry. We transformed raw REML parameter esti-
mates (denoted hg-cc

2 ) to hg
2  using the linear transformation of ref. 3 assuming 

case fraction for each GERA disease matched population risk.
For the PGC2 data set, which is overascertained for schizophrenia cases, 

we estimated hg
2  using PCGC regression17 (see below) to avoid ascertain-

ment-induced REML bias17,27. In all our PGC2 analyses, we included sex, 29 
study indicators and ten principal components as covariates and assumed a 
schizophrenia population risk of 1% (refs. 5,11,12).

Computationally efficient implementation of PCGC regression. To run 
PCGC regression on N = 50,000 samples, we developed a new, efficient soft-
ware implementation of PCGC regression (see URLs). The new software  
(i) eliminates in-memory storage of N × N matrices by accumulating dot  
products among regressors on the fly (i.e., streaming the GRM inputs);  
(ii) speeds up jackknife computations (by streaming the GRMs in one pass); 
and (iii) eliminates storage of ‘cleaned’ GRMs (i.e., GRMs with principal  
components projected out) by projecting principal components on the fly.

Partitioning SNP heritability across genomic regions. We estimated per-
chromosome hg,chr

2  by running BOLT-REML on all samples and markers using 
one variance component per chromosome and rescaling raw REML param-
eter estimates and standard errors by h hg g-cc

2 2/  (Supplementary Table 3),  
noting that relative variance contributions are accurately estimated by REML 
even under case-control ascertainment (Supplementary Figs. 16–19).  
Estimating per-megabase hg,1 Mb

2  in an analogous manner would have required 
fitting a >2,500–variance component model, which was computationally 
intractable; therefore, we instead performed the computation on contiguous 
chromosomal segments of up to 100 regions at a time, parallelizing com-
putations using GNU parallel63. We used joint multi–variance component 

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1


Nature GeNetics doi:10.1038/ng.3431

analyses rather than fixed-effect analyses of one region at a time to improve 
robustness against potential confounding (for example, subtle structure or  
LD between SNPs in nearby windows): any such confounding would  
contribute to multiple one-region-at-a-time fixed-effect analyses, whereas it 
is spread across a joint random-effects analysis. (Additionally, we note that 
fixed-effect regression run on one region at a time would incur strong upward 
bias: each regressor, even if uncorrelated with the phenotype, can still be used 
to explain ~1/N of the variance.) For schizophrenia, we used one variance 
component per 1-Mb region in the segment (discarding regions containing <5 
markers) plus a single additional variance component containing all remain-
ing markers. (This approach is similar to that in ref. 64 but computationally 
cheaper than directly applying the method in ref. 64 using BOLT-REML.) 
Including all markers in the model was necessary because of ascertainment-
induced genome-wide LD among causal variants27; we observed that analyses 
without the all-remaining-markers variance component produced inflated 
estimates. For the GERA diseases, we did not observe this phenomenon, as 
expected for a randomly ascertained trait, so for computational efficiency 
we included only markers in flanking 1-Mb regions in the additional vari-
ance component. We ran BOLT-REML with 15 Monte Carlo trials for the 
extensive computations in this section; we used 100 Monte Carlo trials in 
all other analyses. We note that we were unable to perform these analyses 
using PCGC regression because of the disk space requirements of storing 
100 different 50,000 × 50,000 GRMs. We also note that the choice of 1 Mb 
as the window size reflects a tradeoff between fine resolution and the need 
to preserve a reasonable signal-to-noise ratio of hg,1 Mb

2  estimates (using  
N = 50,000 samples) for downstream analyses. A larger sample size would 
allow decreasing the window size. In the limit of infinite sample size, analysis 
using one variance component per SNP would theoretically be possible, but, 
in this limit, the variance-component model would also converge to standard 
multivariate (fixed-effect) regression.

We estimated hg,GC
2  for each GC quintile by stratifying 1-Mb regions into 

GC quintiles and running BOLT-REML as above with one variance component 
per quintile. To obtain finer resolution for regression analyses, we further 
stratified 1-Mb regions into 50 GC-content strata. We then performed a series 
of BOLT-REML analyses with one variance component containing the first 
n strata and a second variance component containing the last 50 − n strata, 
and we estimated hg,GC

2  of the nth stratum as the difference between the SNP 
heritability estimates for n and n − 1 strata.

Bounding the SNP heritability explained by the top 1-Mb regions. We 
bounded the population variance in disease liability explained by the 1-Mb 
regions with the largest true hg,1 Mb

2  using the following procedure. We inferred 
an upper bound by analyzing the observed distribution of hg,1 Mb

2  estimates 
and accounting for sampling variance. Explicitly, we analyzed the probability 
of obtaining a zero hg,1 Mb

2  estimate, P(0), as a function of the actual value of 
hg,1 Mb

2  (relative to its mean). Because of sampling noise and the non-negativity  
constraint on our REML hg,1 Mb

2  estimates, P(0) is always positive. In lieu 
of an analytic formula for P(0) as a function of actual hg,1 Mb

2 , we obtained 
Monte Carlo estimates of P(0) by simulating quantitative traits (for the sam-
ples analyzed, using their actual genotypes) with heritability equal to the  
hg-cc

2  of the actual disease status (Supplementary Table 3). We distributed 
heritability across varying numbers of causal variants (13 values ranging from 
2,000 random markers to all available markers) and assigned each normalized 
causal variant a normally distributed effect size, repeating each simulation 
five times. For each of the 65 simulated traits, we estimated hg,1 Mb

2  for each 
1-Mb region. Combining these data with the actual hg,1 Mb

2  per region (that 
is, the sum of squared simulated effect sizes), and, aggregating the data from 
all simulations and all 1-Mb regions, we obtained a clean empirical estimate 
of P(0) as a function of actual hg,1 Mb

2 , which we observed was well fit by a sum 
of two exponentials (Supplementary Fig. 3). Although the empirical curve 
was based on simulation data, it is robust to the genetic architecture used in 
simulations (for example, varying numbers of causal SNPs and normal versus 
Laplace effect size distributions; Supplementary Fig. 4), as it simply measures 
the sampling distribution of constrained REML estimates for our genotype 
data at a given actual hg,1 Mb

2 .
To interpret the observed fraction of zero hg,1 Mb

2  estimates in light of 
this information, we harnessed the fact that the decay curve of P(0) versus 

actual hg,1 Mb
2  is convex (Supplementary Fig. 3). In particular, if a set of  

1-Mb regions has a fixed average actual hg,1 Mb
2 , their average P(0) is minimized  

when all the regions have equal actual hg,1 Mb
2  (by Jensen’s inequality). 

Conversely, an uneven distribution of actual hg,1 Mb
2  across regions tends to 

increase the number of zero hg,1 Mb
2  estimates. These observations allowed us 

to bound the maximum fraction of hg
2  that could be explained by top 1-Mb 

regions and still be consistent with the observed fraction of zero hg,1 Mb
2  esti-

mates. Explicitly, if a certain number of top regions explain SNP heritability 
hg,top

2 , then the sum of P(0) over all regions is minimized by setting hg,1 Mb
2  of 

each top region to (hg,top
2  divided by the number of top regions) and hg,1 Mb

2  
of each remaining region to (h hg

2
g,top
2− ) divided by the number of non-top 

regions. We therefore bounded hg,top
2  by requiring this minimum expected 

number of zero hg,1 Mb
2  estimates to be at most the observed number of zero 

hg,1 Mb
2  estimates (plus 1.96 times its standard error for a conservative 95% 

confidence bound). We checked the accuracy of this procedure using simu-
lated case-control ascertained data sets with varying numbers of causal SNPs 
(Supplementary Fig. 5).

We obtained lower bounds on the fraction of hg
2  explained by top 1-Mb 

regions by threefold cross-validation. For each fold in turn, we estimated hg,1 Mb
2  

for each region using the remaining two folds, ranked regions accordingly and 
then estimated the SNP heritability explained by top-ranked regions using the 
left-out fold. We repeated this procedure three times, obtaining nine estimates 
per fraction of regions, and computed the mean minus 1.96 times the standard 
deviation/3 as a conservative 95% confidence lower bound on the SNP heritability 
explained by top regions. We estimate standard error using standard deviation/3 
because the variance of heritability estimates scales with the number of sample 
pairs (N2) for N << M (refs. 15,16). This standard error estimate is not theoreti-
cally precise because of the complexities of sample reuse in cross-validation65, 
but a rough estimate (see Supplementary Table 4 for empirical support) suffices 
given that the lower bound is probably a substantial underestimate (that is, very 
conservative): the finite sample size of the training folds prevents an accurate 
ranking of regions, especially those contributing small amounts of variance.

Partitioning SNP heritability across allele frequency bins. We computed 
per–MAF bin hg,MAF

2  estimates in a manner analogous to hg,chr
2  estimates.  

To infer per–MAF bin hMAF
2  explained by untyped as well as typed variants, we 

ran simulations using UK10K sequencing data to assess the tagging efficiency 
of our PGC2 and GERA marker sets in various MAF ranges. Specifically, we 
simulated fully heritable quantitative traits in which normalized SNPs with 
MAF p ≥0.1% (in the UK10K data) were selected as causal with probability 
0.5% and assigned normally distributed effect sizes with variance (p(1 − p))α. 
(This setup assumes that UK10K SNPs explain all narrow-sense heritability, 
but, given that we are only interested in tagging efficiency at MAF ≥2%, our 
estimation procedure is robust to violations of this assumption. We also note 
that our choice of a normal distribution of effect sizes is inconsequential given 
the robustness of REML estimates to a wide range of genetic architectures28.) 
We performed 4,000 simulations for each of α = 0, −0.25, −0.5 and −1. For each 
marker set, we then computed REML estimates of hMAF

2  for each simulated 
trait across six MAF bins (Fig. 4) using one variance component per bin29 
and restricting to SNPs in the marker set. A small subset of the PGC2 marker 
IDs (8%) and GERA SNP IDs (4%) were not present among the UK10K SNP 
IDs, so we did not include these markers in our REML analyses of simulated 
traits; we verified that the inclusion versus exclusion of these markers had a 
negligible effect on schizophrenia hg,MAF

2  estimates (Supplementary Fig. 20).  
We performed REML analyses of UK10K simulated traits using a slightly mod-
ified version of GCTA v1.21 (ref. 2) to perform robust unconstrained REML 
(allowing negative hg,MAF

2  estimates); at low sample sizes, constrained REML 
estimates are upward biased because of noise and the positivity constraint. (We 
modified GCTA to improve robustness in this setting by adding a trust region 
framework to its REML optimization.) Finally, we computed hg,MAF

2  for the 
simulated traits by summing squared simulated effect sizes.

Estimating genetic correlations and total correlations of disease liabilities. 
For each pair of GERA diseases, we estimated the genetic correlation (denoted rg)  
directly from bivariate BOLT-REML, which models both genetic and resid-
ual covariance, using all samples and markers. Under a liability-threshold 
model, the estimated genetic correlation (using observed case-control phe-
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notypes) accurately reflects the genetic correlation of underlying disease 
liabilities, so we did not need to transform raw BOLT-REML rg parameter 
estimates7. However, the total correlation of observed case-control pheno-
types is damped relative to the total correlation of underlying disease liabilities 
(which we denote by rl): assuming two diseases have bivariate normal liabilities 
l1 and l2 with correlation rl, the correlation of case-control phenotypes is rp =  
corr(l1 > z1, l2 > z2), where z1 and z2 are appropriate liability thresholds. In gen-
eral, |rp| ≤ |rl| under a bivariate normal liability-threshold model; for example, 
two traits with the same liabilities (rl = 1) but different thresholds (z1 ≠ z2) have  
rp < rl. We recovered rl from rp by straightforward Monte Carlo simulation, per-
forming a binary search to determine the value of rl producing the observed rp 
assuming values of z1 and z2 corresponding to GERA case fractions. Similarly, 
we obtained a standard error for rl by transforming the 95% confidence inter-
val for rp (based on its standard error of ( )/1 2− √r Np ) in the same way. Finally, 
we note that, for analyses in which we included BMI (coded on a scale of 1–5 
in the GERA data) as a covariate, we included an additional missing indicator 
covariate marking samples with missing BMI (5%).
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